Preferred Language
Articles
/
IoZosoYBIXToZYAL0bGf
Mesoscale modeling of fracture in cement and asphalt concrete
...Show More Authors

In this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and laboratory specimens in addition to its accurate results. Comparing the numerical results of the mesoscale models of cement and asphalt concrete specimens with experimental data shows that these models can predict the behavior of these composite materials very well as seen in the curves of load-crack mouth opening displacement (CMOD). Also, the mesoscale modeling highlights the variability of crack direction where it is dependent on the random distribution of aggregate.

Scopus Crossref
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Engineering
Influence of Using Various Percentages of Slag on Mechanical Properties of Fly Ash-based Geopolymer Concrete
...Show More Authors

In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of sl

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Fri Jul 14 2023
Journal Name
International Journal Of Information Technology & Decision Making
A Decision Modeling Approach for Data Acquisition Systems of the Vehicle Industry Based on Interval-Valued Linear Diophantine Fuzzy Set
...Show More Authors

Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem

... Show More
View Publication
Scopus (3)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Dec 22 2020
Journal Name
Lecture Notes In Civil Engineering
Proposed Design Charts for Reinforced Concrete Spread Foundations Subjected to Concentric Load
...Show More Authors

The design of reinforced concrete spread foundations mainly depends on soil bearing capacity, loading value, and column size. So for each design case, tiresome calculations and time consumption are needed. In this paper, generalized design charts are presented and plotted according to derivations based on the ACI 318 M-2019 Code. These charts could be used directly by the structural designers to estimate the column size, foundation thickness, and dimensions as well as the foundation reinforcement under a certain given concentric load assuming a uniformly distributed contact pressure underneath the foundation. Of noteworthy, these charts are oriented to deal with square isolated footings with a square concentric column, covering reasonable r

... Show More
View Publication
Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Materials
Prediction of the Bending Strength of a Composite Steel Beam–Slab Member Filled with Recycled Concrete
...Show More Authors

This study investigated the structural behavior of a beam–slab member fabricated using a steel C-Purlins beam carrying a profile steel sheet slab covered by a dry board sheet filled with recycled aggregate concrete, called a CBPDS member. This concept was developed to reduce the cost and self-weight of the composite beam–slab system; it replaces the hot-rolled steel I-beam with a steel C-Purlins section, which is easier to fabricate and weighs less. For this purpose, six full-scale CBPDS specimens were tested under four-point static bending. This study investigated the effect of using double C-Purlins beams face-to-face as connected or separated sections and the effect of using concrete material that contains different recycled

... Show More
View Publication
Crossref (7)
Crossref
Publication Date
Fri Mar 20 2020
Journal Name
Fibers
Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect
...Show More Authors

The construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical prop

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Aug 21 2021
Journal Name
Engineering, Technology & Applied Science Research
The Impact of Hybrid Fibers on Punching Shear Strength of Concrete Flat Plates Exposed to Fire
...Show More Authors

This study presents an investigation about the effect of fire flame on the punching shear strength of hybrid fiber reinforced concrete flat plates. The main considered parameters are the fiber type (steel or glass) and the burning steady-state temperatures (500 and 600°C). A total of 9 half-scale flat plate specimens of dimensions 1500mm×1500mm×100mm and 1.5% fiber volume fraction were cast and divided into 3 groups. Each group consisted of 3 specimens that were identical to those in the other groups. The specimens of the second and the third groups were subjected to fire flame influence for 1 hour and steady-state temperature of 500 and 600°C respectively. Regarding the cooling process, water sprinkling was applied directly aft

... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Thu Jun 04 2020
Journal Name
Fibers
A Comparative Study of the Performance of Slender Reinforced Concrete Columns with Different Cross-Sectional Shapes
...Show More Authors

Most reinforced concrete (RC) structures are constructed with square/rectangular columns. The cross-section size of these types of columns is much larger than the thickness of their partitions. Therefore, parts of these columns are protruded out of the partitions. The emergence of columns edges out of the walls has some disadvantages. This limitation is difficult to be overcome with square or rectangular columns. To solve this problem, new types of RC columns called specially shaped reinforced concrete (SSRC) columns have been used as hidden columns. Besides, the use of SSRC columns provides many structural and architectural advantages as compared with rectangular columns. Therefore, this study was conducted to explain the structura

... Show More
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Journal Of Engineering
Effect of Web Stiffeners on The Flexural Behavior of Composite GFRP- Concrete ‎Beam Under Impact Load
...Show More Authors

In this paper, numerical and experimental studies on the elastic behavior of glass fiber reinforced ‎polymer (GFRP) with stiffeners in the GFRP section's web (to prevent local buckling) are presented. ‎The GFRP profiles‎ were connected to the concrete deck slab by shear connectors. Two full-scale simply supported ‎composite beams (with and without stiffeners) were tested under impact load (three-point load) to ‎assess its structural response. The results ‎proved that the maximum impact force, maximum ‎deflection, damping time, and ‎damping ratio of the composite beam were affected by the GFRP ‎stiffeners‎. The experimental results indicated that the damping ratio and deflection were diminished compare

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
The effect of using different fibres on the impact-resistance of slurry infiltrated fibrous concrete (SIFCON)
...Show More Authors
Abstract<p>Slurry infiltrated fibrous concrete (SIFCON) is a modern type of fibre reinforced concrete (FRC). It has unique properties; SIFCON is superior in compressive strength, flexural strength, tensile strength, impact resistance, energy absorption and ductility. Because of this superiority in these characteristics, SIFCON was qualified for applications of special structures, which require resisting sudden dynamic loads such as explosions and earthquakes. The main aim of this investigation is to determine the effect of fibre type on the apparent density of SIFCON and on performance under impact load. In this investigation, hook-end steel fibre and polyolefin fibre were used. Purely once and </p> ... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Wed May 01 2019
Journal Name
Iop Conf. Series: Materials Science And Engineering
Fire flame effect on the compressive strength of reactive powder concrete using different methods of cooling
...Show More Authors

This research foxed on the effect of fire flame of different burning temperatures (300, 400 and 500)oC on the compressive strength of reactive powder concrete (RPC).The steady state duration of the burning test was (60)min. Local consuming material were used to mixed a RPC of compressive strength around (100) MPa. The tested specimens were reinforced by (3.0) cm hooked end steel fiber of (1100) MPa yield strength. Three steel fiber volume fraction were adopted in this study (0, 1.0and 1.5)% and two cooling process were included, gradual and sudden. It was concluding that increasing burning temperature decreases the residual compressive strength for RPC specimens of(0%) steel fiber volume fraction by (12.16, 19.46&24.49) and (18.20, 27.77 &3

... Show More
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref