The Cenomanian – Turronian sedimentary succession in the south Iraq oil fields, including Ahmadi, Rumaila, Mishrif and Khasib formations have undergone into high-resolution reservoir-scale genetic sequence stratigraphic analysis. Some oil-wells from Majnoon and West-Qurna oil fields were selected as a representative case for the regional sequence stratigraphic analysis. The south Iraqi Albian – Cenomanian – Turronian succession of 2nd-order depositional super-sequence has been analyzed based on the Arabian Plate chronosequence stratigraphic context, properly distinguished by three main chrono-markers (The maximum flooding surface, MFS-K100 of the upper shale member of Nahr Umr Formation, MFS-K140 of the upper Mishrif carbonates, and MFS-K150 of the lower Khasib shale member).Three 3rd-order genetic mega-sequences were embraced between the cited chrono-markers. The markers have been considered as regional key-surfaces for the Late Albian – Cenomanian to Early Turonian and Late Turonian to Early Coniacian stratigraphy of the south Iraqi oil fields. Eight 4th-order genetic meso-sequences (MS1 to MS8) have been established, comprising multiple 5th-order high-frequency (HF) lithofacies cycles, successively arranged in the mega-sequences without disturbance. MFS-K135 (this study), MFS-K140, MFS-K150 and Seven successive regional chrono-markers [MFS-K120, MFS-K125 (this study), MFS-K130, and MFS-K160 of upper Khasib shale member] started from lower Ahmadi shale member, identify these meso-sequences. Associated fifteen key-surfaces (K121, K122, K123, K124, K125, K126, K127, K128, K129, K131, K132, K133, K134, K141 & K142) have been described as well. The meso-sequence 1 signifies Ahmadi lithofacies buildups, whereas; the other meso-sequences represent Mishrif lithofacies buildups. The Rumaila carbonates come across the first HST-unit of the meso-sequence 2. The meso-sequence 8 represents the Khasib carbonate facies buildups. The depositional super-sequence is terminated by type-1 sequence boundary SB-K150 at the top of the Mishrif Formation, created by maximum regression (MR). The study declares 15 reservoir syn-layers and 9 non-reservoir layers; each is essentially characterized by HF-single-lithofacies-cycle and lateral continuity pattern. This syn-layer model can be used as sequence steering technique for carbonates heterogeneity aspects, in the south Iraqi oil fields to control fluid dynamics in primary and secondary development projects.
Building numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr
In present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreThe purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.
Surface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned above, which is a very
... Show MoreAbstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show MoreSurface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned
... Show More