The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classification by adapting VGG-16 net and VGG-19 net models and subsequently identifying the optimal performer between the two nets during the classification process. A publicly available dataset comprising 500 images categorized into 5 distinct classes (100 images per class), was utilized in this work. The obtained empirical outcomes demonstrate a remarkable accuracy rate of 99.6% for the VGG-16 net model, while VGG-19 net achieves a 100% accuracy rate. Based on these findings, it can be inferred that VGG-19 net exhibits superior performance in classifying images of grapevine leaves compared to the VGG-16 net. © (2024), (Universitas Ahmad Dahlan). All Rights Reserved.
In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.
In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
The use of deep learning.
Active Learning And Creative Thinking
This study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreMorus alba, member of the Moraceae family, is a perennial tree utilized in folk medicine, preparing the modern drug, and considered the main food for silkworms. However, data on chemical content in the leaves is still limited; the main objective of this study is to detect the presence and determine the concentration of different polyphenolic constituents in the leaves of the Morus alba plant by reverse phase-high performance liquid chromatography (RP-HPLC) and evaluate the cytotoxic effect of ethyl acetate extract of this plant on human breast cancer (AMJ-13) cell line. Phytochemical analysis of the Morus alba leaves ethyl acetate extract led to identifying and quantification of six polyphenolic constituents designated as phenolic a
... Show More