Introduction: The present study was performed to evaluate the influence of a 1064 nm fiber laser on shear bond strength (SBS) at the interface of titanium and resin cement. Methods: Forty titanium discs of 6 mm × 3 mm (diameter and thickness respectively) were categorized into four groups (n=10): control group without any surface treatment and three groups treated with a fiber laser with 81 ns pulse duration, 30 kHz frequency, 10000 mm/s scanning speed, 0.05 mm spot size, and different average power values (3, 5 and 7 W) depending on the tested group. Titanium disc characterization was performed by the scanning electron microscope (SEM) and surface roughness tester. Phase analysis was achieved using an X-ray diffractometer (XRD). Following these tests, resin cement application to titanium discs was performed. SBS values were determined by the universal testing machine. After debonding, the surface of titanium discs was examined by the stereomicroscope for the determination of failure modes. Data analysis was performed using analysis of variance (ANOVA) and Tukey HSD tests (α=0.05). Results: A higher surface roughness value was observed in the 7 W group followed by the 5 W and 3 W groups, and the lowest surface roughness was in the control group. Additionally, the lowest SBS value was obtained from the control group and the highest SBS value was obtained from the 7 W group followed by the 5 W and 3 W groups. Conclusion: SBS between titanium abutment and resin cement can be significantly enhanced by using a fiber laser as a surface treatment considering tested laser parameters; additionally, a positive association between surface roughness and SBS was noted in the experimental groups.
Reactive Powder Concrete (RPC) can be incorporate as a one of the most important and progressive concrete technology. It is a special type of ultra-high strength concrete (UHSC) that’s exclude the coarse aggregate from its constitutive materials. In this research an experimental study had been carried out to investigate the effect of using three types of materials (porcelain aggregate) and others sustainable materials (glass waste and granular activated carbon) as a partial replacement of fine aggregate. Four percentages had considered (0, 10, 15 and 20) % to achieve better understanding for the influence of these materials upon the compressive strength of RPC. Four curing ages had included in this study, these are; 7, 28, 60 and
... Show MoreReactive Powder Concrete (RPC) can be incorporate as a one of the most important and progressive concrete technology. It is a special type of ultra-high strength concrete (UHSC) that’s exclude the coarse aggregate from its constitutive materials. In this research an experimental study had been carried out to investigate the effect of using three types of materials (porcelain aggregate) and others sustainable materials (glass waste and granular activated carbon) as a partial replacement of fine aggregate. Four percentages had considered (0, 10, 15 and 20) % to achieve better understanding for the influence of these materials upon the compressive strength of RPC. Four curing ages had included in this study, these are; 7, 28, 60 and
... Show MorePoly methyl methacrylate PMMA polymer could be considered the main material that used mostly in the recent years in denture base fabrication. It commonly known by it is poor strength properties such as low impact strength. The aim of the present research was to enhance the performance of PMMA denture base through the addition of two kind of nanoparticles (nano particles that selected from artificial and natural sources). Nano -particles from both Al2O3 and crushed peanut Peel were used for comparing purposes.Various weight fraction used in this study for both kinds of the additive (1%, 2% and 3%). Moreover, in this work a study and evaluation in impact strength (I.S.) value were done before and after immersion. The new prepared nanocompo
... Show MoreBackground: lip lengthening procedure is one of the surgical options for the correction of gummy smile in patients with short upper lip. Methods: A comparative clinical study was conducted on 15 patients requiring lip lengthening procedure for the esthetic correction of excessive gingival exposure with gummy smile. Scalpel was used in seven patients and diode laser in the remaining eight patients. Under infiltration anesthesia, about one cm strip of mucosa was excised at the vestibular depth and the mucosa of the lip was sutured to the alveolar mucosa. Results: The diode laser group demonstrated less postoperative pain and swelling. Regarding postoperative ecchymosis, three patients in the scalpel group developed ecchymosis and no cases
... Show MoreDue to the remarkable progress in photovoltaic technology, enhancing efficiency and minimized the costs have emerged as global challenges for the solar industry. A crucial aspect of this advancement involves the creation of solar cell antireflection coating, which play a significant role in minimizing sunlight reflection on the cell surface. In this study, we report on the optimization of the characteristics of CeO2 films prepared by pulsed laser deposition through the variation of laser energy density. The deposited CeO2 nanostructure films have been used as an effective antireflection coating (ARC) and light-trapping morphology to improve the efficiency of silicon crystalline solar cell. The film’s thickness increases as laser fluence i
... Show MoreI
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreThe present work focuses on the experimental implementation of one of the fiber optical sensors, the optical glass fiber built on surface Plasmon resonance. A type of optical glass fiber was used in this work, single-mode no-core fiber with pre-tapering diameter: (125.1 μm) and (125.3 μm), respectively. The taper method can be tested by measuring the output power of the optical fiber before and after chemical etching to show the difference in cladding diameter due to the effect of hydrofluoric acid with increasing time for the taper process. The optical glass fiber sensor can be fabricated using the taper method to reduce the cladding diameter of the fibers to (83.12 µm, 64.37 µm, and 52.45 µm) for single-mode fibers using Hydrofluoric
... Show MoreThe importance of this study stems from the importance of preserving the environment and creating a clean sustainable environment from waste and emissions and all the operations of industrial companies in general and cement companies in particular by activating sustainability accounting standards. The research aims to identify and diagnose deviations in violation of sustainability standards by employing the non-renewable resources standard (NR0401) For the construction industries to create a sustainable audit environment, the deductive approach was followed in the theoretical side and the inductive and descriptive approach to the practical side. The most important results of the research were the possibility of applying sustainab
... Show More