There are two main categories of force control schemes: hybrid position-force control and impedance control. However, the former does not take into account the dynamic interaction between the robot’s end effector and the environment. In contrast, impedance control includes regulation and stabilization of robot motion by creating a mathematical relationship between the interaction forces and the reference trajectories. It involves an energetic pair of a flow and an effort, instead of controlling a single position or a force. A mass-spring-damper impedance filter is generally used for safe interaction purposes. Tuning the parameters of the impedance filter is important and, if an unsuitable strategy is used, this can lead to unstable contact. Humans, however, have exceptionally effective control systems with advanced biological actuators. An individual can manipulate muscle stiffness to comply with the interaction forces. Accordingly, the parameters of the impedance filter should be time varying rather than value constant in order to match human behavior during interaction tasks. Therefore, this paper presents an overview of impedance control strategies including standard and extended control schemes. Standard controllers cover impedance and admittance architectures. Extended control schemes include admittance control with force tracking, variable impedance control, and impedance control of flexible joints. The categories of impedance control and their features and limitations are well introduced. Attention is paid to variable impedance control while considering the possible control schemes, the performance, stability, and the integration of constant compliant elements with the host robot.
This study investigates the results of electrocoagulation (EC) using aluminum (Al) electrodes as anode and stainless steel (grade 316) as a cathode for removing silica, calcium, and magnesium ions from simulated cooling tower blowdown waters. The simulated water contains (50 mg/l silica, 508 mg/l calcium, and 292 mg/l magnesium). The influence of different experimental parameters, such as current density (0.5, 1, and 2 mA/cm2), initial pH(5,7, and 10), the temperature of the simulated solution(250C and 35 0C), and electrolysis time was studied. The highest removal efficiency of 80.183%, 99.21%, and 98.06% for calcium, silica, and magnesium ions, respectively, were obtained at a current de
... Show MoreObjective: The aim of this study is to determine the role of spiral Computerized Tomography in the diagnosis and
detection the types of stroke.
Methodology: One hundred sixty two patients (162) (99 males and 63 females) their ages ranging from (13 – 80)
year, all of them are suffering from stroke. They were collected randomly from spiral Computerized Tomography
unit in Baquba Teaching hospital during the period from November / 2010 to December / 2011 .All the patients
were examined clinically and then done spiral Computerized Tomography examination.
Results : The results of this study showed that the stroke effected different age groups and both sex but males is
more affected than the females .The results of spiral
Thermal conductivity of compacted bentonite is one of the most important properties where this type of clay is proposed for use as a buffer material. In this study, Lee's disc method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results have been analyzed to observe the three major factors affecting the thermal conductivity of bentonite buffer material. While the clay density reaches to a target value, the measurement is taken to evaluate the thermal conductivity. By repeating this procedure, a relationship between clay dry density and thermal conductivity has been established in specimens after adjusting the water contents of the bentonite by placing its specimens in a drying oven for diffe
... Show MoreMoisture induced damage can cause a progressive deterioration in the performance of asphalt pavement by the loss of adhesion between asphalt binder and aggregate surface and/or loss of cohesion within the binder in the presence of water. The objective of this paper is to improve the asphalt mixtures resistance to moisture by using hydrated lime as an anti-stripping additive. For this purpose, two types of asphalt binder were utilized; asphalt grades (40-50) and (60-70) with one type of aggregate of 19.0 mm aggregate nominal maximum size, and limestone dust as a mineral filler. Marshall method was adopted to find the optimum asphalt content. Essentially, two parameters were determined to evaluate the moisture susceptibili
... Show MoreThe Quantitative high-resolution planktonic foraminiferal analysis of the subsurface section in three selected wells in the Ajeel Oil Field (Aj-8, Aj-12, and Aj-15) in Tikrit Governorate, Central Iraq has revealed that Shiranish Formation deposited in Late Campanian- Latest Maastrichtian age. This formation consists mainly of marly and marly limestone yielding diverse planktonic foraminiferal assemblages and calcareous benthic foraminifera, with a total of 46 species that belong to 23 genera, Three zones and four subzones, which cover the Late Campanian to the Latest Maastrichtian, were identified based on the recorded planktonic foraminifera and their ranges. They are as follows:1. Globotruncana aegyptiaca Zone that dated to be Lat
... Show MoreIn this research an analysis for improving the fatigue behavior (safety factor of fatigue) of non- articular prosthetic foot (SACH) in the region (Bolt Adapter).The laser peening was carried to the fatigue specimens to improving the fatigue properties of bolt’s material. The tests of mechanical properties and fatigue behavior were carried for material that the bolt manufacture from it, a region where the failure occur and inserted of these properties to the program of engineering analysis (Ansys) to calculate the safety factor of fatigue. The results showed that the safety factor after hardening by laser is increased by 42.8%.
This paper presents seven modified Adomian Decomposition Method (ADM) techniques for efficiently solving initial value problems, especially those involving non-homogeneous and nonlinear differential equations. While the classical ADM is effective for linear homogeneous cases, it has difficulties solving more complex problems. The proposed modifications—from MADM1 to MLADM—include Maclaurin and Taylor expansions, Laplace transforms, and single-step iterations.• These modifications enhance convergence, reduce complexity, and improve accuracy.• Each method offers specific advantages, such as accelerating convergence (MADM2, RADM4), simplifying computation (TSADM5), and achieving higher accuracy (MLADM).• Numerical examples confirm th
... Show MoreThis paper presents a new approach to discover the effect of depth water for underwater visible light communications (UVLC). The quality of the optical link was investigated with varying water depth under coastal water types. The performance of the UVLC with multiple input–multiple output (MIMO) techniques was examined in terms of bit error rate (BER) and data rate. The theoretical result explains that there is a good performance for UVLC system under coastal water.