The current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless steel mesh (SSMa) and the cathode was a couple of stainless steel plain (SSPc). The anode in the third CW-MFC unit was stainless steel mesh (SSMa) and the cathode was graphite plate (GPc). It was found that the maximum performance for electricity generation (9 mW/m3) was obtained in the unit with stainless steel mesh as anode and graphite plate as cathode. After 10 days of operation, the best result for COD removal (70%) was obtained in the unit with stainless steel mesh as anode and stainless steel plain as cathode. The effect of temperature was also investigated. The performance of unit operation for electricity generation was tested at three values of temperature; 30, 35 and 40oC. The best result was obtained at 40oC, at which the current density obtained was 80 mA/m3. A culture of Algae could grow in the unit in order to supply the cathodic region with oxygen.
The complexity and partially defined nature of jet grouting make it hard to predict the performance of grouted piles. So the trials of cement injection at a location with similar soil properties as the erecting site are necessary to assess the performance of the grouted piles. Nevertheless, instead of executing trial-injected piles at the pilot site, which wastes money, time, and effort, the laboratory cement injection devices are essential alternatives for evaluating soil injection ability. This study assesses the performance of a low-pressure laboratory grouting device by improving loose sandy soil injected using binders formed of Silica Fume (SF) as a chemical admixture (10% of Ordinary Portland Cement OPC mass) to di
... Show MoreThe performance of a synergistic combination of electrocoagulation (EC) and electro-oxidation (EO) for oilfield wastewater treatment has been studied. The effect of operative variables such as current density, pH, and electrolyte concentration on the reduction of chemical oxygen demand (COD) was studied and optimized based on Response Surface Methodology (RSM). The results showed that the current density had the highest impact on the COD removal with a contribution of 64.07% while pH, NaCl addition and other interactions affects account for only 34.67%. The optimized operating parameters were a current density of 26.77 mA/cm2 and a pH of 7.6 with no addition of NaCl which results in a COD removal efficiency of 93.43% and a specific energy c
... Show MoreThe present work deals with the performance of screw piles constructed in gypseous soil of medium relative density; such piles are extensively used in piles foundations supported structures subjected to axial forces. The carrying capacity and settlement of a single screw pile model of several diameters (20, 30, and 40) mm inserted in gypseous soil is investigated in the present study. The gypsum content of soil used in tests was 40%. The bedding soil used in tests was prepared by raining technique with a relative density of 40%. A physical model was manufactured to demonstrate the tests in the laboratory. The model of screw pile has been manufactured of steel with a total length of 50
Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
Constructed wetlands (CWs) are simple low-cost wastewater treatment units that use natural process to improve the effluent water quality and make it possible for its reuse.in this study used the horizontal flow system for the tertiary treatment of wastewater effluent from secondary basins at Al-Rustamiya wastewater treatment plant / old project / Baghdad / Iraq. the Phragmites Australis plant was used for wastewater treatment and the horizontal subsurface flow system was applied. the experimental study was carried out in February 2020 to October 2020. the parameters were monitored for a period of five weeks, Concentration-based average removal efficiencies for HSSF-CW were COD,53% [NO
Flexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mec
... Show MoreThe unprejudiced of this education is to gauge the ability of the retinoic acid to induce apoptotic cell death in hematological tumors through caspase dependent or independent apoptotic pathway, The cytotoxicity effects of retinoic acid of different concentrations (400,350,300,250,200,150,100,50,25,12.5 μg\ml) and exposure for all hematological malignancy cell lines (Human non-Hodgkin lymphoma SR and human multiple myeloma (COLO 677) and Human Monocytic Leukemia THP1 and Acute promyelocytic leukemia NB4) have been determined using a microtetrazolium (MTT) assay. Propodeum iodide and alcidine orange (AO/PI) paired discoloration was used to study the ability of retinoic acid to induce apoptosis in the infected cells and examined under fluore
... Show More