RA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
Face recognition and identity verification are now critical components of current security and verification technology. The main objective of this review is to identify the most important deep learning techniques that have contributed to the improvement in the accuracy and reliability of facial recognition systems, as well as highlighting existing problems and potential future research areas. An extensive literature review was conducted with the assistance of leading scientific databases such as IEEE Xplore, ScienceDirect, and SpringerLink and covered studies from the period 2015 to 2024. The studies of interest were related to the application of deep neural networks, i.e., CNN, Siamese, and Transformer-based models, in face recogni
... Show MoreIn this paper, a compression system with high synthetic architect is introduced, it is based on wavelet transform, polynomial representation and quadtree coding. The bio-orthogonal (tap 9/7) wavelet transform is used to decompose the image signal, and 2D polynomial representation is utilized to prune the existing high scale variation of image signal. Quantization with quadtree coding are followed by shift coding are applied to compress the detail band and the residue part of approximation subband. The test results indicate that the introduced system is simple and fast and it leads to better compression gain in comparison with the case of using first order polynomial approximation.
Abstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show MoreHR Al-Hamamy, AA Noaimi, HA Salman, NAA Jabbar, American Journal of Dermatology and Venereology, 2013
Background: Frovatriptan succinate (FVT) is an effective medication used to treat migraines; however, available oral formulations suffer from low permeability; accordingly, several formulations of FVT were prepared. Objective: Prepare, optimize, and evaluate FVT-BE formulation to develop enhanced intranasal binary nano-ethosome gel. Methods: Binary ethosomes were prepared using different concentrations of phospholipid PLH90, ethanol, propylene glycol, and cholesterol by thin film hydration and characterized by particle size, zeta potential, and entrapment efficiency. Furthermore, in-vitro, in-vivo, ex-vivo, pharmacokinetics, and histopathological studies were done. Results: Regarding FVT-loaded BE, formula (F9) demonstrated the best paramet
... Show MoreDiabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show More