Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to
In this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel
... Show MoreLet R be a commutative ring with identity, and let M be a unity R-module. M is called a bounded R-module provided that there exists an element x?M such that annR(M) = annR(x). As a generalization of this concept, a concept of semi-bounded module has been introduced as follows: M is called a semi-bounded if there exists an element x?M such that . In this paper, some properties and characterizations of semi-bounded modules are given. Also, various basic results about semi-bounded modules are considered. Moreover, some relations between semi-bounded modules and other types of modules are considered.
The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.
Zainab M. Al-Bahrani Department of Oral Diagnosis, College of Dentistry, University of Baghdad, Baghdad, Iraq.Corresponding author: Zainab M. Al-Bahra...
This research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to
... Show MorePoverty phenomenon is very substantial topic that determines the future of societies and governments and the way that they deals with education, health and economy. Sometimes poverty takes multidimensional trends through education and health. The research aims at studying multidimensional poverty in Iraq by using panelized regression methods, to analyze Big Data sets from demographical surveys collected by the Central Statistical Organization in Iraq. We choose classical penalized regression method represented by The Ridge Regression, Moreover; we choose another penalized method which is the Smooth Integration of Counting and Absolute Deviation (SICA) to analyze Big Data sets related to the different poverty forms in Iraq. Euclidian Distanc
... Show MoreFaintly continuous (FC) functions, entitled faintly S-continuous and faintly δS-continuous functions have been introduced and investigated via a -open and -open sets. Several characterizations and properties of faintly S-continuous and faintly -Continuous functions were obtained. In addition, relationships between faintly s- Continuous and faintly S-continuous function and other forms of FC function were investigated. Also, it is shown that every faintly S-continuous is weakly S-continuous. The Convers is shown to be satisfied only if the co-domain of the function is almost regular.
The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t
... Show MoreResearchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show More