Corona virus sickness has become a big public health issue in 2019. Because of its contact-transparent characteristics, it is rapidly spreading. The use of a face mask is among the most efficient methods for preventing the transmission of the Covid-19 virus. Wearing the face mask alone can cut the chance of catching the virus by over 70\%. Consequently, World Health Organization (WHO) advised wearing masks in crowded places as precautionary measures. Because of the incorrect use of facial masks, illnesses have spread rapidly in some locations. To solve this challenge, we needed a reliable mask monitoring system. Numerous government entities are attempting to make wearing a face mask mandatory; this process can be facilitated by using face mask detection software based on AI and image processing techniques. For face detection, helmet detection, and mask detection, the approaches mentioned in the article utilize Machine learning, Deep learning, and many other approaches. It will be simple to distinguish between persons having masks and those who are not having masks using all of these ways. The effectiveness of mask detectors must be improved immediately. In this article, we will explain the techniques for face mask detection with a literature review and drawbacks for each technique.
Because of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.
To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method a
... Show MoreIn this study, different methods were used for estimating location parameter and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment estimation (ME),and approximation estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile as estimation for distribution f
... Show MoreThe purpose of this study is to measure the levels of quality control for some crude oil products in Iraqi refineries, and how they are close to the international standards, through the application of statistical methods in quality control of oil products in Iraqi refineries. Where the answers of the study sample were applied to a group of Iraqi refinery employees (Al-Dora refinery, Al-Nasiriyah refinery, and Al-Basra refinery) on the principles of quality management control, and according to the different personal characteristics (gender, age, academic qualification, number of years of experience, job level). In order to achieve the objectives of the study, a questionnaire that included (12) items, in order to collect preliminary inform
... Show MoreClassification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreThis manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.
As a result of the development and global openness and the possibility of companies providing their services outside their spatial boundaries that were determined by them, and the transformation of the world due to the development of the means of communication into a large global market that accommodates all products from different regions and of the same type and production field, competition resulted between companies, and the race to obtain the largest market share It ensures the largest amount of profits, and it is natural for the advertising promotion by companies for their product to shift from an advertisement for one product to a competitive advertisement that calls on the recipient to leave the competing product and switch to it
... Show MoreFor modeling a photovoltaic module, it is necessary to calculate the basic parameters which control the current-voltage characteristic curves, that is not provided by the manufacturer. Generally, for mono crystalline silicon module, the shunt resistance is generally high, and it is neglected in this model. In this study, three methods are presented for four parameters model. Explicit simplified method based on an analytical solution, slope method based on manufacturer data, and iterative method based on a numerical resolution. The results obtained for these methods were compared with experimental measured data. The iterative method was more accurate than the other two methods but more complexity. The average deviation of
... Show MoreThe diagnosis of acute appendicitis (AA) sometimes is illusive and the accompanying clinical and laboratory manifestations cannot be used for definitive diagnosis. Objective: This study aimed to evaluate the diagnostic value of neutrophil/lymphocyte ratio (NLR) in detection of AA. Materials and Methods: This is a cross-sectional study that included a total of 80 adult patients with AA and 62 age- and gender-matched patients with abdominal pain due to causes other than AA. Three milliliter of peripheral blood were collected from each participant. The NLR was calculated by dividing the absolute neutrophil count by the absolute lymphocyte count. Receiver operating characteristic curve was used to assess the diagnostic value of NLR in detection
... Show MoreEsculin (ESCN) is used in the pharmaceutical industry with intravenous effect, stimulant and anti-inflammatory capillaries, like vitamin P. It is a significant component of many anti-inflammatory remedies such as esqusan, esflazid and anavenol [14]. It is also found in numerous other remedies available in the market such as proctosone, anustat, and ariproct.
To determine experimental conditions, to elucidate retention behavior of esculin in HILIC mode. Moreover, to suggest new ways to separate and determinate esculin in ointments.
Two hydrophilic c