It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological properties of water-based drilling fluid using other simple measurable properties. While mud density, marsh funnel, and solid% are key input parameters in this study, the output models are plastic viscosity, yield point, apparent viscosity and gel strength. The prediction methods have been applied on datasets taken from the final reports of two wells drilled in the Ahdeb oil field, eastern Iraq. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error have been used in this study. The current results support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological mud properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties using simple and quick equipment such as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.
Reduce the required time for measuring the permeability of clayey soils by using new manufactured cell
This study aims to analyze the spectral properties of plasma produced from rice husk(Rh) using the laser breakdown spectroscopy (LIBS) method. The plasma generation process used the fundamental harmonic (1064 nm) of a Q-switched Nd:YAG laser. Yttrium aluminum garnet (YAG) is a man-made crystalline material. The laser fired pulses with a duration of 10 ns and a repetition rate of 6 Hz. Thus, the energy outputs achieved were 50–200 mJ at the wavelength of 1064 (nm). The silica content in the rice hulls was verified using an XRF measurement, which revealed the presence of silica in the rice hulls in a high percentage. Precise beam focusing was achieved by focusing the laser on the target material. This target material is placed with
... Show MoreThis paper analysed the effect of electronic internal auditing (EIA) based on the Control Objectives for Information and Related Technologies (COBIT) framework. Organisations must implement an up-to-date accounting information system (AIS) capable of meeting their auditing requirements. Electronic audit risk (compliance assessment, control assurance, and risk assessment) is a development by Weidenmier and Ramamoorti (2006) to improve AIS. In order to fulfil the study’s objectives, a questionnaire was prepared and distributed to a sample comprising 120 employees. The employees were financial managers, internal auditors, and workers involved in the company’s information security departments in the General Company for Electricity D
... Show MoreIn this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g
... Show MoreThe importance of the study stems from the fact that it deals with a very important subject, namely, the pivotal role played by E-banking in achieving the competitive advantage of the banking institutions operating in Algeria. By adopting the banking institution and adopting the elements of the electronic marketing mix and developing it as required by the environment The banking system of developments will inevitably be able to achieve excellence from its competitors as each of these elements have an important role in achieving competitive advantage, we relied in this study on studies and research that directly affect the problem of the study and we have put Estep In order to activate the contribution of e-banking in achieving competitiv
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreVarious of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreFour new copolymers were synthesized from reaction of bis acid monomer 3-((4-carboxyphenyl) diazenyl)-5-chloro-2-hydroxybenzoic acid with five diacidhydrazide in presence of poly phosphoric acid. The resulted monomers and copolymers have been characterized by FT-IR, 1H-NMR, 13C-NMR spectroscopy as well as EIMs technique. The number averages of molecular weights of the copolymers are between 4822 and 9144, and their polydispersity indexes are between 1.02 and 2.15. All the copolymers show good thermal stability with the temperatures higher than 305.86 C when losing 10% weight under nitrogen. The cyclic voltammetry (CV) measurement and the electrochemical band gaps (Eg) of these copolymers are found below 2.00 ev.