It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological properties of water-based drilling fluid using other simple measurable properties. While mud density, marsh funnel, and solid% are key input parameters in this study, the output models are plastic viscosity, yield point, apparent viscosity and gel strength. The prediction methods have been applied on datasets taken from the final reports of two wells drilled in the Ahdeb oil field, eastern Iraq. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error have been used in this study. The current results support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological mud properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties using simple and quick equipment such as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.
In this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreThe objective of this work is to study the influence of end milling cutting process parameters, tool material and geometry on multi-response outputs for 4032 Al-alloy. This can be done by proposing an approach that combines Taguchi method with grey relational analysis. Three cutting parameters have been selected (spindle speed, feed rate and cut depth) with three levels for each parameter. Three tools with different materials and geometry have been also used to design the experimental tests and runs based on matrix L9. The end milling process with several output characteristics is solved using a grey relational analysis. The results of analysis of variance (ANOVA) showed that the major influencing parameters on multi-objective response w
... Show MoreFresh water resources in terms of water quality is a crucial issue worldwide. In Egypt, the Nile River is the main source of fresh water in the country and monitoring its water quality is a major task on governments and research levels. In the present case study, the physical, chemical and algal distribution in Nile River was monitored over two seasons (winter and summer) in 2019. The aims of the study were to check the seasonal variation among the different water parameters and also to check the correlations between those parameters. Water samples were collected from the Nile in Cairo governorate in EGYPT. The different physiochemical and microbiological properties in water samples were assessed. The studied parameters were included: te
... Show MoreWith the spread of global markets for modern technical education and the diversity of programs for the requirements of the local and global market for information and communication technology, the universities began to race among themselves to earn their academic reputation. In addition, they want to enhance their technological development by developing IMT systems with integrated technology as the security and fastest response with the speed of providing the required service and sure information and linking it The network and using social networking programs with wireless networks which in turn is a driver of the emerging economies of technical education. All of these facilities opened the way to expand the number of students and s
... Show MoreThe public budget is on the same time an art and a science .As an accountable science it seeks balance between public income and public expenditure for an accountable year. And as an accountable art it seeks to achieve economic balance by distributing equitable income in order to reach sustainable development .This is the optimal use of all natural and human resources to address scarcity of natural resources facing the increase need of human resources by spending on education, health, environment, housing, agriculture and industry to achieve social justice for the current generation and future generations. Since the first budget in Iraq on 1921 an accounting budget, is balancing the sections and items has been adopted and since the publi
... Show MoreIn the present study, an attempt has been to develop a new water quality index (WQI) method that depends on the Iraqi specifications for drinking water (IQS 417, 2009) to assess the validity of the Euphrates River for drinking by classifying the quality of the river water at different stations along its entire reach inside the Iraqi lands. The proposed classifications by this method are: Excellent, Good, Acceptable, Poor, and Very poor. Eight water quality parameters have been selected to represent the quality of the river water these are: Ion Hydrogen Concentration (pH), Calcium (Ca), Magnesium (Mg), Sodium (Na), Chloride (Cl), Sulphate (SO_4), Nitrate (NO_3), and Total Dissolved Solids (TDS). The variation of the water quality p
... Show MoreIn the present study, an attempt has been to develop a new water quality index (WQI) method that depends on the Iraqi specifications for drinking water (IQS 417, 2009) to assess the validity of the Euphrates River for drinking by classifying the quality of the river water at different stations along its entire reach inside the Iraqi lands. The proposed classifications by this method are: Excellent, Good, Acceptable, Poor, and Very poor. Eight water quality parameters have been selected to represent the quality of the river water these are: Ion Hydrogen Concentration (pH), Calcium (Ca), Magnesium (Mg), Sodium (Na), Chloride (Cl), Sulphate (SO_4), Nitrate (NO_3), and Total Dissolved Solids (TDS). The variation of the water quality parameters
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show More