Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
<p>The demand for internet applications has increased rapidly. Providing quality of service (QoS) requirements for varied internet application is a challenging task. One important factor that is significantly affected on the QoS service is the transport layer. The transport layer provides end-to-end data transmission across a network. Currently, the most common transport protocols used by internet application are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). Also, there are recent transport protocols such as DCCP (data congestion control protocol), SCTP (stream congestion transmission protocol), and TFRC (TCP-friendly rate control), which are in the standardization process of Internet Engineering Task
... Show MoreThis project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence o
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreMost recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreIn this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method
An optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreIn this work, strains and dynamic crack growth were studied and analyzed in thin flat plate with a surface crack at the center, subjected to cycling low velocity impact loading for two types of aluminum plates (2024, 6061). Experimental and numerical methods were implemented to achieve this research. Numerical analysis using program (ANSYS11-APDL) based on finite element method used to analysis the strains with respect to time at crack tip and then find the velocity of the crack growth under cycling impact loading. In the experimental work, a rig was designed and manufactured to applying the cycling impact loading on the cracked specimens. The grid points was screened in front of the crack tip to measure the elastic-plas
... Show MoreThree cohesionless free flowing materials of different density were mixed in an air fluidized bed to study the mixing process by calculating performance of mixing index according to Rose equation (1959) and to study the effect of four variables (air velocity, mixing time, particle size of trace component and concentration of trace component) on the mixing index and as well as on mixing performance. It was found that mixing index increases with increasing the air velocity, mixing time and concentration of trace component until the optimum value. Mixing index depends on the magnitude of difference in particle size The first set of experiments (salt then sand then cast iron) give higher mixing index and better performance of mixing than the
... Show MoreAbstract
The purpose of the present paper is to light on the relationship between jobs design, analysis and its reflections on reinforcing workers' vocational adjustment. The present paper aims to accomplish cognitive and applied goals, top of which, test of functional analysis ability to have effect upon workers' vocational adjustment via job design directly and indirectly owning to the virtual factor practiced by these practices on the sought organization. The problem of the present paper comes with many, the most important is the of how to bolster and back up worker's technical adjustment through good and accurate design for the job.
Based on this problem and goals as to expla
... Show MoreThe present work covers the Face-Hobbing method for generation and simulation of meshing of Face hobbed hypoid gear drive. In this work the generation process of hobbed hypoid gear has been achieved by determination of the generation function of blade cutter. The teeth surfaces have been drawn depending on the simulation of the cutting process and the head cutter motion. Tooth contact analysis (TCA) of such gear drive is presented to evaluate analytically the transmission error function for concave and convex tooth side due to misalignment errors. TCA results show that the gear is very sensitive to misalignment errors and
the increasing of the gear teeth number decrease the transmission error for both concave and convex tooth sides a