Preferred Language
Articles
/
IBjvG5YBVTCNdQwC6oKb
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease
...Show More Authors

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease
...Show More Authors

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
International Journal Of Nanoscience
Gold Nanoparticles Synthesis Using Environmentally Friendly Approach for Inhibition Human Breast Cancer
...Show More Authors

In this study, gold nanoparticles were synthesized in a single step biosynthetic method using aqueous leaves extract of thymus vulgaris L. It acts as a reducing and capping agent. The characterizations of nanoparticles were carried out using UV-Visible spectra, X-ray diffraction (XRD) and FTIR. The surface plasmon resonance of the as-prepared gold nanoparticles (GNPs) showed the surface plasmon resonance centered at 550[Formula: see text]nm. The XRD pattern showed that the strong four intense peaks indicated the crystalline nature and the face centered cubic structure of the gold nanoparticles. The average crystallite size of the AuNPs was 14.93[Formula: see text]nm. Field emission scanning electron microscope (FESEM) was used to s

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness and Material Removal Rate in Electrochemical Machining Using Taguchi Method
...Show More Authors

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Fri Jun 30 2017
Journal Name
International Journal Of Medical Research & Health Sciences
FLI1 Expression in Breast Cancer Cell Lines and Primary Breast Carcinomas is Correlated with ER, PR and HER2
...Show More Authors

FLI1 is a member of ETS family of transcription factors that regulate a variety of normal biologic activities including cell proliferation, differentiation, and apoptosis. The expression of FLI1 and its correlation with well-known breast cancer prognostic markers (ER, PR and HER2) was determined in primary breast tumors as well as four breast cancer lines including: MCF-7, T47D, MDA-MB-231 and MDA-MB-468 using RT-qPCR with either 18S rRNA or ACTB (β-actin) for normalization of data. FLI1 mRNA level was decreased in the breast cancer cell lines under study compared to the normal breast tissue; however, Jurkat cells, which were used as a positive control, showed overexpression compared to the normal breast. Regarding primary breast carcinoma

... Show More
Preview PDF
Publication Date
Sun Oct 29 2023
Journal Name
Iraqi National Journal Of Nursing Specialties
Assessment the Relation between Breast Cancer and Blood Group
...Show More Authors

Objectives: To assess the relation between breast cancer & blood groups, identify the importance of women
age group and the relation of age with breast cancer.
Methodology: The study was performed on (115) women who were diagnosed with breast cancer in different
stages of disease and different ages. Blood samples were taken from them to demonstrate their blood groups and
(20) fresh tumor tissue samples were obtained; the tumor tissue used as a source of lectin for hemagglutinate
with erythrocyte of different blood groups. The study conducted at Baghdad Teaching Hospital and Radiation &
Nuclear Medicine Hospital from January, 2007 through June 2007.
Results: The study shows that the highest percentage of women

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 07 2020
Journal Name
Plant Archives
Seroprevalence of Human Cytomegalovirus in Iraqi Breast Cancer Patients
...Show More Authors

The current study was conducted in the period extending from November 2018 to October 2019 and designed as a case-control study and aimed to assess the seroprevalence of HCMV. However, a total number of 91serum specimens were collected to fulfill this purpose from females (71 breast cancer patients, and control group of 20 females) attending Al-Amal hospital for cancer management and Baghdad teaching hospital and the practical part was performed in College of Science, University of Baghdad. The study protocol was approved by the Ethics Committee at the Department of Biology (Reference: BEC/0220/0011). The immunological part for evaluation of seroprevalence of HCMV was accomplished by ELISA technique which revealed that anti-HCMV IgG was sco

... Show More
Preview PDF
Scopus (3)
Scopus
Publication Date
Tue Jun 25 2024
Journal Name
World Academy Of Sciences Journal
Expression of programmed death ligand 1 in patients with triple‑negative breast cancer: Association with clinicopathological parameters
...Show More Authors

The utilization of targeted therapy for programmed death ligand 1 (PD‑L1) has emerged as a prominent focus in contemporary clinical trials, particularly in the context of immune checkpoint inhibitors. The prognostic significance of the expression of PD‑L1 in invasive mammary cancer remains a subject of discussion in clinical oncology, requiring further exploration, despite its recognition as a biomarker for responsiveness to anti‑PDL1 immunotherapy. The present study was conducted to investigate the immunohistological expression of PD‑L1 in women with triple‑negative breast cancer (TNBC), with a particular focus for searching for the associated clinical and pathological characteristics. The present retrospective study examined the

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref