Preferred Language
Articles
/
IBjvG5YBVTCNdQwC6oKb
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 07 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
CA 27-29: A Valuable Marker for Breast Cancer Management in Correlation with CA 15-3
...Show More Authors

View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 03 2016
Journal Name
Journal Of The Faculty Of Medicine Baghdad
The Impact of Body Mass Index and Some Trace Elements in Iraqi Women with Breast Cancer
...Show More Authors

Background: Breast cancer is a highly heterogeneous disease globally. Trace elements such as copper and zinc have a role in many biochemical reactions as micro source, their metabolism is profoundly altered in neoplastic diseases especially breast cancer which is ranked as the first of female cancersObjective: The aim of the present study is to study the impact of body mass index and some trace elements in Iraqi women with breast cancer.Patients and methods: The group of the study consisted of 25 breast cancer patients; their age range was (25–65) years recruited from the Al-Kadhimia Teaching Hospital and 25 apparently healthy women age matched, over a period of 6 months from January 2015 until June 2015. After the diagnosis was m

... Show More
View Publication
Crossref
Publication Date
Sun Aug 21 2022
Journal Name
International Journal Of Health Sciences
Effect of x- ray on the treatment of breast cancer combined with amygdalin and doxorubicin separately
...Show More Authors

Background: Radiation therapy has the ability to destroy healthy cells in addition to cancer cells in the area being treated. However, when radiation combines with doxorubicin, it becomes more effective on breast cancer treatment. Objective: This study aims to clarify the effect of X-ray from LINAC combined with amygdalin and doxorubicin on breast cancer treatment, and the possibility of using amygdalin with X-ray instead of doxorubicin for the breast cancer treatment. Method: Two cell lines were used in this study, the first one was MCF-7 cell line and second one was WRL- 68 normal cell line. These cells were preserved in liquid nitrogen, prepared, developed and tested in the (place). The effect of three x-ray doses combined with a

... Show More
View Publication
Crossref
Publication Date
Fri Apr 02 2021
Journal Name
New Trends In Information And Communications Technology Applications: 4th International Conference, Ntict 2020, Baghdad, Iraq, June 15, 2020, Proceedings 4
Iris recognition using localized Zernike features with partial iris pattern
...Show More Authors

Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Deep Learning of Diabetic Retinopathy Classification in Fundus Images
...Show More Authors

Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Al-khwarizmi Engineering Journal
Deep-Learning-Based Mobile Application for Detecting COVID-19
...Show More Authors

Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Medicinal And Chemical Sciences
The Role of Monoamine Oxidase and Atherogenic Index in Newly Diagnosed and Tamoxifen Treated Women with Breast Cancer Disease
...Show More Authors

Breast cancer (BC) is one of the most frequently observed malignancy in females worldwide. Today, tamoxifen (TAM) is considered as the highly effective therapy for treatment of breast tumors. Oxidative stress has implicated strongly in the pathophysiology of malignancies. This study aimed to investigate the changes in the levels of oxidants and antioxidants in patients with newly diagnosed and TAM-treated BC. Sixty newly diagnosed and 60 TAM-treated women with BC and 50 healthy volunteers were included in this study. Parameters including total oxidant capacity (TOC), total antioxidant capacity (TAC), and catalase (CAT) activity were determined before and after treatment with TAM. The serum levels of TOC and oxidative stress index (OSI) were

... Show More
View Publication Preview PDF
Scopus (7)
Scopus
Publication Date
Fri Jan 06 2023
Journal Name
Journal Of Advanced Biotechnology And Experimental Therapeutics
Evaluation of oxidative stress activity and the levels of homocysteine, vitamin B12, and DNA methylation among women with breast cancer
...Show More Authors

Breast cancer (BC) is the most common malignant tumor in women and the leading cause of cancer deaths worldwide. This work was conducted to estimate the roles of oxidative stress, vitamin B12, homocysteine (HCY), and DNA methylation in BC disease progression. Sixty BC patients (age range 33–80 years) and 30 healthy controls were recruited for this study. Patients with BC were split to group 1 consisted of stage II BC women (low level), and group 2 consisted of patients in stages III and IV (high level). Malondialdehyde (MDA), glutathione peroxidase 3 (GPX3), HCY, and vitamin B12 levels in the study groups were measured. Also, the 5-methylcytosine (5mC) global DNA methylation levels were evaluated. The results showed a significant

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Crossref