A shocking third species emerged from a family of coronaviruses (CoV) in late 2019 following viruses causing SARS (Severe Acute Respiratory Syndrome-CoV) in 2003 and MERS (Middle East Respiratory Syndrome-CoV) in 2012; it’s a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; formerly called 2019-nCoV). First emerging in China, it has spread rapidly across the globe, giving rise to significant social and economic costs and imposing severe strain on healthcare systems. Since many attempts to control viral spread has been futile, the only old practice of containment including city lockdown and social distancing are working to some extent. Unfortunately, specific antiviral drugs and vaccines remain un available yet. Many factors are encountered to play essential roles in viral pathogenesis. These include a broad viral-host range with high receptor binding affinity to various human tissues, viral adaptation to humans, a high percentage of asymptomatic but infected carriers, prolonged incubation, and viral shedding periods. There are also a wide variety of pulmonary and extrapulmonary tissue damage mechanisms including direct cell injury or immune-mediated damages involving the immune cells, upregulation of proinflammatory cytokines, and antibody dependent enhancement that can result in multi-organ failure. In this article, we summarise some evidence on the various steps in SARS-CoV-2 pathogenesis and immune evasion strategies to assess their contribution to our understanding of unresolved problems related to SARS-CoV-2 prevention, control, and treatment protocols.
The air flow pattern in a co-current pilot plant spray dryer fitted with a rotary disk atomizer was determined experimentally and modelled numerically using Computational Fluid Dynamics (CFD) (ANSYS Fluent ) software. The CFD simulation used a three dimensions system, Reynolds-Average Navier-Stokes equations (RANS), closed via the RNG k −ε turbulence model. Measurements were carried out at a rotation of the atomizer (3000 rpm) and when there is no rotation using a drying air at 25 oC and air velocity at the inlet of 5 m/s without swirl. The air flow pattern was predicted experimentally using cotton tufts and digital anemometer. The CFD simulation predicted a downward central flowing air core surrounded by a slow
... Show MoreInefficient wastewater disposal and wastewater discharge problems in water bodies have led to increasing pollution in water bodies. Pollutants in the river contribute to increasing the biological oxygen demand (BOD), total suspended solids (SS), total dissolved solids (TDS), chemical oxygen demand (COD), and toxic metals render this water unsuitable for consumption and even pose a significant risk to human health. Over the last few years, water conservation has been the subject of growing awareness and concern throughout the world, so this research focused on review studies of researches that studied the importance of water quality of wastewater treated disposal in water bodies and modern technology to management w
... Show MoreIn the present work, the thermo-fluid characteristics of a heat exchanger formed of helical coiled tubes immersed in cold water are investigated experimentally. Two types of helical coiled tube are tested, a conventional vertical single helical coiled tube and a new triple vertical helical coiled tube in parallel connection called as meshed coils. The effect of hot water flow rates inside the tubes (ranges from 2.67 to 7.08 l/min), and its inlet temperatures (namely 50, 60, 70 and 80 °C) are investigated. The experimental results show that increasing the flow rate inside the meshed coils leads to decrease the temperature difference between inlet and outlet. An enhancement of heat transfer for meshed coils compared to single coil has been n
... Show MoreIn this work, varying compositions of SiO2 micro filler were added
with the Polyvinyl Chloride (PVC) and samples have been prepared
using film casting technique. The results have been analyzed and
compared for PVC samples with (1 wt%, 3 wt%, 5 wt% and 10 wt%)
SiO2 micro filler. Mechanical characteristics such as tensile strength,
elongation at break and Young`s modulus were measured for all the
samples, where the tensile strength was increased from 8.39 Mpa for
purified PVC to 16 Mpa for 3% SiO2/PVC composite. Also, thermal
conductivity measurement values illustrated that composite materials
have a good thermal insulation at 10 wt. %, thermal conductivity was
decreased from 0.1684 W/m.
In a world of limited space, the owners are always surrounded by others next to them, and, consequently, there is hardly any activity which the owner may exercise on his land which would not affect the other owners. If he builds a building, that building may block the sun's rays or the air from the buildings next to it and owned by other people. And if he runs a business, the lands adjacent to that business may be overburdened with the accompanying noise or traffic. If oil is prospected in a land, the neighboring lands may be deprived of oil or their owners may be exposed to toxic fumes. Hence the importance of researching the intention of harming others, as it is one of the most important forms of abuse in the use of the right (especially
... Show MoreIntroduction: Nowadays, the prevalence of Musculoskeletal Discomforts (MSD) is increasing in the world. As treatment, usually surgery or physiotherapyare recommended, but they are expensive and may cause side effects. Apracticalcourse of treatment without negative side effects and with permanent positive effects is lacking. Objective: To suggest a practical course of treatment, introduced by a licensed Yoga coach who is experienced in this field, and through thatto shed a light on yoga as treatment for MSD. The hypothesis is that yoga may decrease the pain among individuals with MSD. Methods: This hypothesis is presented based on the practical techniques used in Yoga including body relaxation and breathing awareness (2 minutes & 3 minutes r
... Show MoreThe aim of this work is to explore the thermal performance of a tracked tubular solar still (TSS) with a parabolic trough concentrator in Baghdad (33.27° N, 44.37° E) in September 2022. The present tubular still is distinguished by its hexagonal glass cover. The effect of integrating the TSS with a heat pipe, the still tilt angle (10°, 15°), and the depth of saline water inside the still partitions on the productivity of freshwater are investigated. The results showed that using heat pipe enhances the freshwater productivity by 25%–40% and the efficiency by 25%. For the still integrated with heat pipe, as the water depth is increased from 5.5 to 6.5 cm the productivity of freshwater is incre
HTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023