A shocking third species emerged from a family of coronaviruses (CoV) in late 2019 following viruses causing SARS (Severe Acute Respiratory Syndrome-CoV) in 2003 and MERS (Middle East Respiratory Syndrome-CoV) in 2012; it’s a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; formerly called 2019-nCoV). First emerging in China, it has spread rapidly across the globe, giving rise to significant social and economic costs and imposing severe strain on healthcare systems. Since many attempts to control viral spread has been futile, the only old practice of containment including city lockdown and social distancing are working to some extent. Unfortunately, specific antiviral drugs and vaccines remain un available yet. Many factors are encountered to play essential roles in viral pathogenesis. These include a broad viral-host range with high receptor binding affinity to various human tissues, viral adaptation to humans, a high percentage of asymptomatic but infected carriers, prolonged incubation, and viral shedding periods. There are also a wide variety of pulmonary and extrapulmonary tissue damage mechanisms including direct cell injury or immune-mediated damages involving the immune cells, upregulation of proinflammatory cytokines, and antibody dependent enhancement that can result in multi-organ failure. In this article, we summarise some evidence on the various steps in SARS-CoV-2 pathogenesis and immune evasion strategies to assess their contribution to our understanding of unresolved problems related to SARS-CoV-2 prevention, control, and treatment protocols.
Mixed ligands of 2-benzoyl Thiobenzimiazole (L1) with 1,10-phenanthroline (L2) complexes of Cr(III) , Ni(II) and Cu(II) ions were prepared. The ligand and the complexes were isolated and characterized in solid state by using FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR, flame atomic absorption, elemental micro analysis C.H.N.S, magnetic susceptibility , melting points and conductivity measurements. 2-Benzoyl thiobenzimiazole behaves as bidenetate through oxygen atom of carbonyl group and nitrogen atom of imine group. From the analyses Octahedral geometry was suggested for all prepared complexes. A theoretical treatment of ligands and their metal complexes in gas phase were studied using HyperChem-8 program, moreover, ligands in gas phase
... Show Morecompound [1] was formed from the reaction of benzoin and benzaldehyde in the presence of ammonia, which was reacted with sodium hydride in DMF to obtain imidazole salt. This salt was reacted with adipoyl chloride to give compound [2]. Acid hydrazide derivative [3] was obtained from the reaction of compound [2] with hydrazine hydrate. After that Shiff bases [4-9] have been synthesized from the reaction of compound [3] with different aromatic aldehydes. These new formed compounds were diagnosed by 13C-NMR, 1H-NMR for some of them (in Ahl-Albate University in Jordan) and FT-IR spectroscopy (In Baghdad University). All of the prepared products have been studied their biological activities toward two kinds of bacteria. These products show
... Show MoreIn this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the (CH3)3COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the
Abstract: Recombinant Newcastle disease virus (rNDV) has shown an anticancer effect in preclinical studies, but has never been tested in a lung cancer models. In this study we explored the anticancer activity of genetically modified NDV expressing IL-2-P53 (rClone30–IL-2-P53) in lung cancer model. We have cloned IL-2 and P53 genes and inserted them in the viral genome of New Castle Disease Virus to create a genetically modified rNDV- IL-2-P53 virus and tested the anti-tumor activity of the new virus in vitro on different types of cancer cell lines by MTT assay. TheIL-2 and P53 gene were successfully cloned and inserted into the viral genome by using a Mlu I and Sfi I endonucleases, viral vector was constructed correctly and successf
... Show MoreThe research seeks to find out the extent of the coverage of the Mosul press to the issues of psychological and social effects of the organization "IS" on the community of Mosul, by analyzing the content of the newspapers “Economic City” and “Mosul News”. As well as to stand at the types of psychological and social effects and their repercussions on the Mosul community including figures, statistics and evidence that were covered in the theoretical study of these topics.
This study is the first scientific diagnosis to reveal the size and types of psychological and social effects of the “ISIS” organization through what was monitored by the Mosul press. The study seeks to draw the attention of officials, decision-m
... Show MoreSince its discovery in December 2019, corona virus was outbreak worldwide with very rapid rate, so it described by WHO as pandemic. It associated with severe acute respiratory distress syndrome, and can enter to cells through Angiotensin Converting Enzyme 2 (ACE 2) receptor which play an important role as regulator for blood pressure. Hypertension is a potential risk factor for sever acute respiratory syndrome COVID-19, and associated with high mortality rate as shown in many epidemiological studies. Moreover, specific antihypertensive medications that infected patients were receiving are not known; only data about renin-angiotensin-aldosterone system (RAAS) are available.
This investigation reports application of a mesoporous nanomaterial based on dicationic ionic liquid bonded to amorphous silica, namely nano-N,N,N′,N′-tetramethyl-N-(silican-propyl)-N′-sulfo-ethane-1,2-diaminium chloride (nano-[TSPSED][Cl]2), as an extremely effectual and recoverable catalyst for the generation of bis(pyrazolyl)methanes and pyrazolopyranopyrimidines in solvent-free conditions. In both synthetic protocols, the performance of this catalyst was very useful and general and presented attractive features including short reaction times with high yields, reasonable turnover frequency and turnover number values, easy workup, high performance under mild conditions, recoverability and reusability in 5 consecutive runs without lo
... Show More