This study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d orbitals of the metal. Most 3d TMCs exhibit metallic properties, excluding zb-TiC and zb-FeC in all phases. An inverse correlation between elastic constant C44 and electronic states near the Fermi level (EF) emerges, guiding applications and design. This study efficiently uncovers 3d TMC properties, offering insights for applications and design.
IMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
Conventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut
... Show MoreThree types of zeolite A were prepared from Iraqi kaoline which are 3A, 4A and 5A by ion exchange method .They were characterized by XRD and atomic absorption techniques .They were used as adsorbents to examine their applicability for H2S adsorption .The adsorption process was performed in a static form and constant volume system which constructed from stainless steel .The effect of zeolite type and temperature on the adsorption properties of H2S at -5 , 25 and 55 oC was studied .The zeolite type 5A has the highest adsorption value (79.384 µmol/g ) and the three types may be arranged in a sequence toward H2S adsorption as 5 A> 4A>3A .The amount of H2S adsorbed increased as temperature decreased from 55 to -5 for all samples. Langmuir , Fre
... Show MoreAbstract: In this research we study the of added NaCl with concentration (0.2, 0.02)M on the spectral of cationically charged dye (cresyl violet) and anionically charged surfactant (sodium dodecyl sulphate) with different concentration, the result show two peaks appearance the first attributed to micelle and the other formation of dye surfactant complex, in addition to the increase in the quantum efficiency of emission spectrum and shifted toward long wavelength (λmax=692.5nm-626nm).
In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.
Akaike’s Information Criterion (AIC) is a popular method for estimation the number of sources impinging on an array of sensors, which is a problem of great interest in several applications. The performance of AIC degrades under low Signal-to-Noise Ratio (SNR). This paper is concerned with the development and application of quadrature mirror filters (QMF) for improving the performance of AIC. A new system is proposed to estimate the number of sources by applying AIC to the outputs of filter bank consisting quadrature mirror filters (QMF). The proposed system can estimate the number of sources under low signal-to-noise ratio (SNR).