Urbanization led to significant changes in the properties of the land surface. That appends additional heat loads at the city, which threaten comfort and health of people. There is unclear understanding represent of the relationship between climate indicators and the features of the early virtual urban design. The research focused on simulation capability, and the affect in urban microclimate. It is assumed that the adoption of certain scenarios and strategies to mitigate the intensity of the UHI leads to the improvement of the local climate and reduce the impact of global warming. The aim is to show on the UHI methods simulation and the programs that supporting simulation and mitigate the effect UHI. UHI reviewed has been conducted the form of many studies, it resulted that all simulation methods were pass through the follow stages: modeling, Simulation and mitigation. Most of the literature reviewed shows that there are some key criteria that have been adopted as universal urban health coverage in cities, and that the first control component is city design.
Integration of laminar bubbling flow with heat transfer equations in a novel internal jacket airlift bioreactor using microbubbles technology was examined in the present study. The investigation was accomplished via Multiphysics modelling to calculate the gas holdup, velocity of liquid recirculation, mixing time and volume dead zone for hydrodynamic aspect. The temperature and internal energy were determined for heat transfer aspect.
The results showed that the concentration of microbubbles in the unsparged area is greater than the chance of large bubbles with no dead zones being observed in the proposed design. In addition the pressure, due to the recirculation velocity of liquid around the draft
... Show MoreThe thermal performance of indirect expansion solar assisted heat pump, IX-SAHP, was investigated experimentally under Iraqi climate. An Indirect-Solar Assisted Heat Pump system was designed, built, instrumented and tested. Experimental tests were conducted by varying the controlling parameters to investigate their effects on the thermal performance of the IX-SAHP such as cooling water flow rate, heating water flow rate, ambient temperature and solar radiation intensity. The investigation covered values of cooling water flow rate of (2, 3, 4, 5 l/min) and heating water flow rate of (2, 3, 4, 5 l/min) under meteorological condition of Baghdad from November 2014 to January 2015.
The results indicated that the performance of the IX-
... Show MoreAbstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreMulti-walled carbon nanotubes (MWCNTs) were functionalized by hexylamine (HA) in a promising, cost-effective, rapid and microwave-assisted approach. In order to decrease defects and remove acid-treatment stage, functionalization of MWCNTs with HA was carried out in the presence of diazonium reaction. Surface functionality groups and morphology of chemically-functionalized MWCNTS were characterized by FTIR, Raman spectroscopy, thermogravimetric analysis (DTG), and transmission electron microscopy (TEM). To reach a promising dispersibility in oil media, MWCNTs were functionalized with HA. While the cylindrical structures of MWCNTs were remained reasonably intact, characterization results consistently confirmed the sidewall-functionalization o
... Show MoreThe thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an
... Show MoreWater is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a resul
... Show MoreAn experimental study is conducted to investigate the effect of heat flux distribution on the boiling safety factor of its cooling channel. The water is allowed to flow in a horizontal circular pipe whose outlet surface is subjected to different heat flux profiles. Four types of heat flux distribution profiles are used during experiments: (constant distribution profile, type a, triangle distribution profile with its maximum in channel center, type b, triangle distribution profile with its maximum in the channel inlet, type c, and triangle distribution profile with its maximum in the channel outlet, type d). The study is conducted using heat sources of (1000 and 2665W), water flow rates of (5, 7 and 9 lit/min). The water
... Show MoreThis study focuses on CFD analysis in the field of the shell and double concentric tube heat exchanger. A commercial CFD package was used to resolve the flow and temperature fields inside the shell and tubes of the heat exchanger used. Simulations by CFD are performed for the single shell and double concentric tube.
This heat exchanger included 16 tubes and 20 baffles. The shell had a length of 1.18 m and its diameter was 220 mm. Solid Works 2014, ANSYS 15.0 software was used to analyze the fields of flow and temperature inside the shell and the tubes. The RNG k-ε model was used and it provided good results. Coarse and fine meshes were investigated, showing that aspect ratio has no significant effect. 14 million
... Show MoreIn addition to the primary treatment, biological treatment is used to reduce inorganic and organic components in the wastewater. The separation of biomass from treated wastewater is usually important to meet the effluent disposal requirements, so the MBBR system has been one of the most important modern technologies that use plastic tankers to transport biomass with wastewater, which works in pure biofilm, at low concentrations of suspended solids. However, biological treatment has been developed using the active sludge mixing process with MBBR. Turbo4bio was established as a sustainable and cost-effective solution for wastewater treatment plants in the early 1990s and ran on minimal sludge, and is easy to maintain. This
... Show More