In this study, aluminum nanoparticles (Al NPs) were prepared using explosive strips method in double-distilled deionized water (DDDW), where the effect of five different currents (25, 50, 75, 100 and 125 A) on particle size and distribution was studied. Also, the explosive strips method was used to decorate zinc oxide particles with Al particles, where Al particles were prepared in suspended from zinc oxide with DDDW. Transmission electron microscopy (TEM), UV-visible absorption spectroscopy, and x-ray diffraction are used to characterize the nanoparticles. XRD pattern were examined for three samples of aluminum particles and DDDW prepared with three current values (25, 75 and 125 A) and three samples prepared with the same currents for zinc oxide suspension with aluminum particles and DDDW. It was observed that when increasing the percentage of prepared Al particles in the suspension consisting of zinc oxide and DDDW, the energy gap of zinc oxide gradually decreased in the samples. Transmission electron microscopy (TEM) analysis is conducted to examine the size, shape, and aggregation of the nanoparticles. The TEM images reveal that the Al nanoparticles exhibit a quasi-spherical shape. The particle size distribution analysis shows that the average crystal size of Al decreases with an increase in the detonation current. This method yields particle with average sizes within the range of 20 to 90 nm. When decorating zinc oxide particles by generating Al nanoparticles inside a suspension of zinc oxide and DDDW, the size of the resulting particles increases with increasing current. © ALL RIGHTS RESERVED.
The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of ads
... Show MoreColloidal silver nanoparticles were prepared by single step green synthesis using aqueous extracts of the leaves of thyme as a function of different molar concentration of AgNO3 (1,2,3,4 mM(. The Field Emission Scanning Electron Microscopy (FESEM), UV-Visible and X-ray diffraction (XRD) were used to characterize the resultant AgNPs. The surface Plasmon resonance was observed at wavelength of 444 nm. The four intensive peaks of XRD pattern indicate the crystalline nature and the face centered cubic structure of the AgNPs. The average crystallite size of the AgNPs ranged from 18 to 22 nm. The FESEM image illustrated the well dispersion of the AgNPs and the spherical shape of the nanoparticles with a particle size distribution be
... Show MoreIn this paper, magnesium oxide nanoparticles (MgO NPS) have been prepared and characterized and its concentration effect has been studied on polymers surface (MgO NPS). The results showed that the degradation of poly methyl methacrylate increased when using such metal oxide. The results also showed that the metal oxide increased the degradation of poly methyl methacrylate. X-ray diffraction, scanning electron microscopy, atomic force microscopy were used to study the morphological characteristics and size of nano MgO particles analysis. Films were prepared by mixing the different masses of MgO NPS (0.025, 0.05, 0.1, 0.2 and 0.4) % with a polymer solution ratio (W/V) 7 %. Photo-
... Show MoreA series of new imides compounds[1-4] were synthesized from reaction of tetrachlorophthalic anhydride or nitro phthalic anhydride or malic anhydride or Succinic anhydride with 4-amino benzene thiol under fusion conditions. Chloroacetic acid has been added after compounds [1-4] reacted with distilled H2O and Na2CO3, producing compounds [5-8]. In benzene, compounds [5-8] also interacted with the thionyl chloride to produce [9-12]. Poly (vinyl alcohol) was chemically modified by reacting PVA with compounds [9-12] and dimethyl formamide to produce compounds [13-16]. Iron oxide nanoparticles (IONPs) are mixed with modified PVA [13-16] to create nanocomposites [17-20]. Spectral and analytical data from synthesized compounds, such as 1
... Show MoreA series of new imides compounds[1-4] were synthesized from reaction of tetrachlorophthalic anhydride or nitro phthalic anhydride or malic anhydride or Succinic anhydride with 4-amino benzene thiol under fusion conditions. Chloroacetic acid has been added after compounds [1-4] reacted with distilled H2O and Na2CO3, producing compounds [5-8]. In benzene, compounds [5-8] also interacted with the thionyl chloride to produce [9-12]. Poly (vinyl alcohol) was chemically modified by reacting PVA with compounds [9-12] and dimethyl formamide to produce compounds [13-16]. Iron oxide nanoparticles (IONPs) are mixed with modified PVA [13-16] to create nanocomposites [17-20]. Spectral and analytical data from synthesized compounds, such as 1H-NMR, FTI
... Show MoreNanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c
... Show MoreThe natural polyphenolic compound that cinnamon contains is well known for its various biological activities, a broad variety of pharmacological and therapeutic properties. Diversified biomedical and pharmacological applications benefit from organic nanoparticles with controlled properties. Bioactive and non-toxic, cinnamon nanoparticles (CNPs) can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using liquid (PLAL) pulse laser ablation technique and defined those NPs. Using Q-switched Nd : YAG With a wavelength of 1064 nm pulse laser of constant energy 500 mj , And different laser pulses ( 250 , 500 , 750 , 1000 ) pulse /sec a pure cinnamon target submerged in
... Show MoreThis study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar
... Show MoreThis study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance,
... Show MoreThe extract of fig fruit has shown significant medical usefulness in various fields. The entrance of nanotechnology into the field of medicinal and pharmacology has shown remarkable advantages. Plants contain diverse molecules thatcan reduce metals, and provide a safe, eco-friendly approach for synthesizing nanoparticles. Iron oxide nanoparticles (IONPs) have been reported to possess an antimicrobial effect against some strains of bacteria and moulds. We have aimed to synthesize IONPs from fig fruit extract and investigate the influence of fig extract and IONPs in wound healing of mice. UV-Vis spectroscopy, X-ray diffraction (XRD), and field emission scanning electron microscopy were used to characterize the IONPs that were produced
... Show More