Background: The possibility of converting the organic fraction of municipal solid waste to mature compost using the composting bin method was studied. Nine distinct treatments were created by combining municipal solid waste (MSW) with animal waste (3:1, 2:1), poultry manure (3:1, 2:1), mixed waste (2:1:1), agricultural waste (dry leaves), biocont (Trichoderm hazarium), and humic acid. Weekly monitoring of temperature, pH, EC, organic matter (OM percent), and the C/N ratio was performed, and macronutrients (N, P, K) were measured. Trace elements, including heavy metals (Cd and Pb), were tested in the first and final weeks of maturity. Results: Temperatures in the first days of composting reached the thermophilic phase in MSW compost with animal and poultry manure between 55–60 °C, pH and EC (mS/cm) increased during the composting period in most composting bin treatments. Overall, organic matter (OM percent) and the C/N ratio decreased (10.27 to 18.9) as result of microbial activity during composting. Organic matter loss percent was less in treatments containing additives (biocont l humic acid) as well agricultural waste treatment. Composting bin treatments with animals and poultry showed higher K and P at the mature stage with an increase in micronutrients. Finally heavy metals were (2.25–4.20) mg/kg and (139–202) mg/kg for Cd and Pb respectively at maturation stage. Conclusion: Therefore, the results suggested that MSW could be composted in the compost bin method with animal and poultry manure. The physio-chemical parameters pH, Ec and C/N were within the acceptable standards. Heavy metals and micronutrients were under the limits of the USA standards. The significance of this study is that the compost bin may be used as a quick check to guarantee that the outputs of long-term public projects fulfill general sustainability requirements, increase ecosystem services, and mitigate the effect of municipal waste disposal on climate change particularly the hot climate regions.
Biosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.
The performance of a batch undivided electrochemical reactor with a rotating cylinder electrode of woven-wire (60 mesh size), stainless steel 316, is examined for the removal of copper from synthetic solution of o.5 M sodium chloride containing 125 ppm at pH ≈ 3.5. The effect of total applied current, rotation speed on the figures of merit of the reactor is analyzed. For an applied current of 300 mA at 100 rpm, the copper concentration decreased from 125 to mg l-1 after 60 min of electrolysis with a specific energy consumption of 1.75 kWh kg-1 and a normalized space velocity of 1.62 h-1. The change in concentration was higher when the total applied currents were increased because of the turbulence
... Show MoreWater hyacinth (Eichhornia crassipes) is a free-floating plant, growing plentifully in the tropical water bodies. It is being speculated that the large biomass can be used in wastewater treatment, heavy steel and dye remediation, as a substrate for bioethanol and biogas production, electrical energy generation, industrial uses, human food and antioxidants, medicines, feed, agriculture, and sustainable improvement. In this work, the adsorption of Congo Red (CR) from aqueous solution onto EC biomass was investigated through a series of batch experiments. The effects of operating parameters such as pH (3-9), dosage (0.1-0.9 g. /100 ml), agitated velocity (100-300), size particle (88-353μm), temperature (10-50˚C), initial dye
... Show MoreThe present study examines the extraction of lead (Pb), cadmium (Cd) and nickel (Ni) from a contaminated soil by washing process. Ethylenediaminetetraacetic acid disodium salt (Na2EDTA) and hydrochloric acid (HCl) solution were used as extractants. Soil washing is one of the most suitable in-situ/ ex-situ remediation method in removing heavy metals. Soil was artificially contaminated with 500 mg/kg (Pb , Cd and Ni ). A set of batch experiments were carried out at different conditions of extractant concentration , contact time, pH and agitation speed. The results showed that the maximum removal efficiencies of (Cd, Pb and Ni ) were (97, 88 and 24 )&nbs
... Show MoreDerivatives of Schiff-bases possess a great importance in pharmaceutical chemistry. They can be used for synthesizing different types of bioactive compounds. In this paper, derivatives of new Schiff bases have been synthesized from several serial steps. The acid (I) was synthesized from the reaction of dichloroethanoic acid with 2 moles of p-aminoacetanilide. New acid (I) converted to its ester (II) via the reaction of (I) with dimethyl sulphate in the present of anhydrous of sodium carbonate and dry acetone. Acid hydrazide (III) has been synthesized by adding 80% of hydrazine hydrate to the new ester using ethanol as a solvent. The last step included the preparation of new Schiff-bases (IV-VIII) by the reaction of acid hydrazide with app
... Show MoreDerivatives of Schiff-bases possess a great importance in pharmaceutical chemistry. They can be used for synthesizing different types of bioactive compounds. In this paper, derivatives of new Schiff bases have been synthesized from several serial steps. The acid (I) was synthesized from the reaction of dichloroethanoic acid with 2 moles of p-aminoacetanilide. New acid (I) converted to its ester (II) via the reaction of (I) with dimethyl sulphate in the present of anhydrous of sodium carbonate and dry acetone. Acid hydrazide (III) has been synthesized by adding 80% of hydrazine hydrate to the new ester using ethanol as a solvent. The last step included the preparation of new Schiff-bases (IV-VIII) by the reaction of acid hydrazide with
... Show MoreExploration activities of the oil and gas industry generate loads of formation water called produced water (PW) up to thousands of tons each day. Depending on the geographic area, formation depth, oil production techniques, and age of oil supply wells, PW from different oil fields contain different chemical compositions. Currently, PW is also known as industrial waste water containing heavy metals that are toxic to humans and the environment, requiring special processing so that they can be disposed of in the environment. To determine the heavy metals content in PW from the Al-Ahdab oil field (AOF), the Ministry of Science and Technology/Agricultural Research Department determined som
This study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f
... Show MoreThis paper presents the first data for bremsstrahlung buildup factor (BBUF) produced by the complete absorption of Y-91 beta particles in different materials via the Monte Carlo simulation method. The bremsstrahlung buildup factors were computed for different thicknesses of water, concrete, aluminum, tin and lead. A single relation between the bremsstrahlung buildup factor BBUF with both the atomic number Z and thickness X of the shielding material has been suggested.