Background: The roles of AI in the academic community continue to grow, especially in the enhancement of learning outcomes and the improvement of writing quality and efficiency. Objectives: To explore in depth the experience of senior pharmacy students in using artificial intelligence for academic purposes. Methods: This qualitative study included face-to-face individual interviews with senior pharmacy students from March to May 2023 using a pre-planned interview guide of open-ended questions. All interviews were audio-recorded. Thematic analysis was used to analyze the data. Results: The results were obtained from 15 in-depth face-to-face interviews with senior pharmacy students (5th and 4th years). Eight participants were male, an
... Show MoreBackground: The roles of AI in the academic community continue to grow, especially in the enhancement of learning outcomes and the improvement of writing quality and efficiency. Objectives: To explore in depth the experience of senior pharmacy students in using artificial intelligence for academic purposes. Methods: This qualitative study included face-to-face individual interviews with senior pharmacy students from March to May 2023 using a pre-planned interview guide of open-ended questions. All interviews were audio-recorded. Thematic analysis was used to analyze the data. Results: The results were obtained from 15 in-depth face-to-face interviews with senior pharmacy students (5th and 4th years). Eight participants were male, and seven
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreThe objective of this study is to evaluate the bacterial count and heavy metal concentration of river water on fish micronuclei. Fish and water samples are carried out in 1 May to 1 June 2013 from Tigris River. A total of fifty three fish sample are studied. The bacteriological quality of water showed that the total viable count is ranged from 150×103 to 352×103 cfu/ml and fecal coliform counts was 1250 cell/100ml during the study period. All the metals (Cu, Hg, Pb, and Zn) are within the normal limit, but Cd was slightly elevated in river water samples. The appearance of micronuclei in red blood cells of all fish species is detect , by recording a larger number of it, in ( Abu Alsomere , Hishne , Bannini Kaber al fam & Karkoor
... Show MorePhysical measurements are one of the basic factors that affect the performance of the goalkeeper, especially when confronting fixed kicks that require special skills such as the reaction and accuracy in concentration, and with technological development artificial intelligence has become an effective tool for analyzing mathematical data that is difficult to discover in traditional methods The study aims to employ techniques Artificial intelligence to study the relationship between physical measurements and the accuracy of confronting the fixed kicks of goalkeepers in football. This study will contribute to providing a deeper understanding of physical factors that affect the performance of goalkeepers, in addition to designing dedicat
... Show MoreBinary mixtures of three heavy oil-stocks had been subjected to density measurments. The data had been aquired on the volumetric behaviour of these systems. The heavy oil-stocks used were of good varity, namely 40 stock , 60 stock, and 150 stock, 40 stock is the lightest one with the API gravity 33.7 while 60 stock is middle type and 150 stock is heavy one, with API gravity 27.7 and 23.8 respectively. Stocks with Kerosene or Xylene for non-ideal mixtures for which excess volume can be positive or negative. Mixture of heavy-oil stocks with paraffinic spike (Kerosene) show negative excess volume. While, aromatic rings results a lower positive excess volume, as shown in Xylene when blending with 40 stock and 60 stock but a negati
... Show MoreOccurrence the heavy metals in water is one of the most important concerns. may cause savior health problems. In this work we made an attempt to know the quantity of six heavy metals in groundwater in different locations of Baghdad city. Examinations were made on groundwater of the review region to assess the heavy metals. Groundwater samples were gathered and analyzed utilizing Atomic Absorption Spectrophotometer for their Manganese, Iron, Zinc, Cadmium, Copper and Lead content and their levels compared with World Health Organization (WHO) specified maximum contaminant level. In order to accomplish this, water samples were obtained from 10 randomly selected wells in the region, in February and August, 2016. The study showed that the ground
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in