Cerium (III), Neodymium (III) and Samarium (III) Complexes existent a wide range of implementation that stretch from their play in the medicinal and pharmaceutical area because of their major significant pharmacological characteristic such as antifungal, anti-cancer, anti-bacterial ,anti-human immunodeficiency virus ,antineoplastic, anti-inflammation,inhibition corrosion,in some industrial (polymers, Azo dye).It is likely to open avenuesto research among various disciplines such as physics, electronics, chemistry and materials science by these complexes that contain exquisitely designed organic molecules.This paper reviews the definition, importance and various applications of Cerium (III), Neodymium (III) and Samarium (III) Complexes anddifferent ligands
In this work, substantial evidence was obtained for ligand reduction in cerium tetrakis acac complexes. Also, this ligand reduction of a negatively charged ligand proved to depend far less on the nature central metal than neutral ligands does. It is supposed that in Mz(acac)z complexes the charge is distributed evenly over the whole molecule. In this work these complexes were prepared and characterized by IR and CHN analysis to indicate the purities of these complexes. The electrochemistry techniques were shown as obtained for ligand reduction. This research was carried out at School of Chemistry and Molecular Science, Sussex University, U.K.
The current study is designed to achieve the goal of early detection of heart disease because it is the main risk of death. Some biomarkers were measured as well as the percentage of the effect of certain risk factors in people with myocardial infarction and heart failure. The study included 40 serum samples from people with heart disease. The effectiveness of the creatine kinase (CK-MB), as well as its temporal and albumin effects, as well as sodium ions in people with myocardial infarction and heart failure, were compared with the control group. as shown below:
-The first group consisted of 25 blood samples from people with myocardial infarction and 15 serum samples from people with heart failure. Blood
... Show MoreIn this research, a selection of some mineral water was selected on the basis of being the most marketed by the owners of shops in Najaf province, with six types, where daily samples of this water were taken by 50 ml for two months from (1/11/2018 -1/1/2019). The following ions concentrations were measured (Br-, Cl-, F-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+), pH and the electrical conductivity were measured and the results were compared with the allowable rates according to the international organizations. It was noted that they conform to international and Iraqi standards.
The new ligand [3,3’-(1,2-phenylenebis(azanediyl))bis(5,5-dimethylcyclohex-2-en-1-one)] (L) derived from 5,5-Dimethylcyclohexane-1,3-dione with 1,2-phenylenediamine was used to prepare a new chain of metal complexes of Mn(ii), Co(ii), Ni(ii), Cu(ii), Cd(ii) and Zn(ii) by inclusive formula [M(L)]Cl2. Characterized compounds on the basis of 1H, 13CNMR (for ligand (L)), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H and %N, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA), while its corrosion inhibition for (plain steel) in tap water is studied by weight loss. These measurements proved th
The polymeric complexes were obtained from the reaction of polymeric Schiff base.N-crotonyl-2-hydroxyphenylazomethine (HL), with divalent metals Pt (II), Cr (II). The modes of bonding and overall geometry of the complexes were determine through spectroscopic methods and compared with that reported from analogous monomeric ligand. This study revealed square planer geometry around the metal center for [Pt(L)Cl] and distorted octahedral geometry for Cr complex [Cr(L)Cl(H2O)2].
In this work dithine complexes prepared from dithiol benzil ligand and central ion to the Ni,Pd,Pt, element the ligand and complexes have been investigated using FTIR spectrophotometer and uv-vis-NIR spectral reigns show higher intensity represents the ?-?* transition in the chromopher cycle .These absorption which appear in visible and near IR spectral regions ,According to the complexes of one group ,the spectral shifting due to the change of central ion has been found to be related to atomic number of central ion .This shifting is increased while decreasing the central ion atom number These complexes have been implemented in Nd+2:YAG cavity because each posses resonant absorption band near Nd+2:YAG, Nd+2:Glass emitting at (106
... Show MoreNew metal complexes of some transition metal ions Co(II), Cu(II) , Cd(II) and Zn(II) were prepared by their reaction with previously prepared ligands HLI= (P-methyl anilino) phenyl acetonitrile and HLII = (P-methyl anilino) –P– chloro phenyl acetonitrile . The two ligands were prepared by Strecker’s procedure which includ the reaction of p- toluidine with benzaldehyde and P- chlorobenzaldehyde respectively. Structures were proposed depending on atomic absorption , i.r. and u.v.visible spectra in addition to magnetic susceptibility and electrical conductivity measurements.
The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing