The idea of using slender Reinforced Concrete (RC) columns with cross-shaped (+-shaped) instead of columns with square-shaped was discussed in this paper. The use of +-shaped columns provides many architectural and structural advantages, such as avoiding prominent columns edges and improved the structural response of member. Therefore, this study explores the structural response of slender +-shaped columns experimentally and numerically by nonlinear finite element analysis using Abaqus simulation tools. The results showed an excellent convergence in strength between numerical and test results with an average standard deviation of 0.05 and 0.07. Besides that, the use of +-shaped columns led to improve the ultimate strength and reduce deflections in all stages of loading, especially with the slenderness ratio more than 40, as compared with square-shaped column. Two design approaches were suggested to evaluate the ultimate strength of +-shaped columns with different slenderness ratios. Briefly, the results showed good structural response of +-shaped columns as compared with square-shaped columns, but further studies are needed to establish the behavior of this type of column, particularly with varying states of loading.
Background: The SARS-CoV-2 virus causes COVID-19, a respiratory syndrome. It causes inflammation and damages several organs in the body. miRNAs play a role in regulating the infection resulting from SARS-CoV-2. MicroRNA-155, a kind of microRNA linked to viral defences, can affect the immune responses during COVID-19. Objectives: Examination of the involvement of microRNA-155 in the development and severity of COVID-19, as well as finding the correlation between microRNA-155 and viral load (copies/mL) in severe cases of the disease. Materials and Method: A case-control research study was performed between October 2022 and June 2023. It included a cohort of 120 hospitalised individuals with severe cases of COVID-19, together with 115 individu
... Show MoreThis paper presents stochastic analysis using the perturbation method to model the structure of a container to verify the distributions of probability of maximum and minimum axial forces reactions in piles. The proposed simulation of a container port terminal under 11 scenarios of load combinations was presented. The probability distributions for live loads are assigned according to the input parameters of simulation data. Part of the load itself is implicitly combined such as vertical live load which includes the weight of equipment and containers and wind load. The structural model was simulated in the software STAAD Pro., while the statistical analyses were performed with MATLAB. The results demonstrated that, the most significant extern
... Show MoreThere has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide low bit error rates (BER) along with information security. The aim of such activity is to steal or distort the information being conveyed. Optical Wireless Systems (basically Free Space Optic Systems, FSO) are no exception to this trend. Thus, there is an urgent necessity to design techniques that can secure privileged information against unauthorized eavesdroppers while simultaneously protecting information against channel-induced perturbations and errors. Conventional cryptographic techniques are not designed
... Show MoreIn this work, the effects of size, and temperature on the linear and nonlinear optical properties in InGaN/GaN inverse parabolic and triangular quantum wells (IPQW and ITQW) for different concentrations at the well center were theoretically investigated. The indium concentrations at the barriers were fixed to be always xmax = 0.2. The energy levels and their associated wave functions are computed within the effective mass approximation. The expressions of optical properties are obtained analytically by using the compact density-matrix approach. The linear, nonlinear, and total absorption coefficients depending on the In concentrations at the well center are investigated as a function of the incident photon energy for different
... Show MoreIn this study, condensation polymerization was used to synthesize a number of novel liquid crystal polymers with 1,3,4-oxadiazole rings based on melamine. The new synthesized polymers were characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy. Differential scanning calorimetry (DSC) and optical polarization microscopy (OPM) were used to investigate their liquid crystalline properties. The results demonstrated that throughout a wide temperature range, most of the polymers exhibited columnar (CohX) and nematic (N) liquid crystalline phases.