Vision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are applied to smooth the data set. In stage two, the network had gotten deeply to the optic disk segment for eliminating any exudate's false prediction because the exudates had the same color pixel as the optic disk. In stage three, the network is fed through training data to classify each label. Finally, the layers of the convolution neural network are re-edited, and used to localize the impact of DR on the patient's eye. The framework tackles the matching technique between two essential concepts where the classification problem depends on the supervised learning method. While the localization problem was obtained by the weakly supervised method. An additional layer known as weakly supervised sensitive heat map (WSSH) was added to detect the ROI of the lesion at a test accuracy of 98.65%, while comparing with Class Activation Map that involved weakly supervised technology achieved 0.954. The main purpose is to learn a representation that collect the central localization of discriminative features in a retina image. CNN-WSSH model is able to highlight decisive features in a single forward pass for getting the best detection of lesions.
The Paleocene benthic foraminiferal zonation of the Umm Er Rhadhuma Formation from the borehole (K.H 12/7), South Anah City (Western Iraq), has been re-studied and re-analyzed precisely based on the large benthic foraminifera (LBF). They are represented by two biozone Rotorbinella hensoni Partial Range Zone, recorded from the Lower and middle parts of the Umm Er Rhadhuma Formation and Lockhartia praehaimei Partial Range Zone determined Uppermost of this unit, and dated to be the Selandian – Thanetian stage. Almost all the biogenic (micro and macro) and non-biogenic constituents, including large benthic foraminifera, Algae, Echinoderm, Bryozoans, Oyster, Gastropod fragments, and peloids, in addition to lithofacies types, indicate t
... Show More
The topological parameters of the metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp*Co) (CpRu)2 (μ3-H) (μ-H)3]1 (Cp* = η5 -C5Me4Et), (Cp = η5 -C5Me5), was explored by using the Quantum Theory of Atoms-in-Molecules (QTAIM). The properties of bond critical points such as the bond delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density ∇2ρ(r), the local energy density H(r), the local potential energy density V(r) and ellipticity ε(r) are compared with data from earlier organometallic system studies. A comparison of the topological processes of different atom-atom interactions has become possible than
... Show More
Abstract
This work is considered the first study for the components of the Iraqi Leucaena leucocephala plant, where the different phytochemical compounds that present in the aerial parts were identified by using the gas chromatography/mass spectrometry technique (GC/MS). The type of the components and their concentration will differ according to the part of the plant used and the method of extraction (hot and cold). This study made a comparison in lupeol concentration that was identified and isolated from petroleum ether fractions of Leucaena leucocephala by using Gas Chromatography/Mass Spectrometry (GC/MS), High-performance thin-layer chromatography (HPTLC), and Preparative High-Performance Li
... Show MoreA new benzylidene derivative, namely N-benzylidene-5-phenyl-1,3,4-thiadiazol-2-amine (BPTA), has been synthesized and instrumentally confirmed with Elemental Analysis (CHN), Nuclear Magnetic Resonance (NMR), and Fourier Transform Infrared Spectroscopy (FT-IR). Titanium Dioxide (TiO2) nanoparticles (NPs) were synthesized and characterized by X-ray. The mutualistic complementary dependence of BPTA with TiO2 nanoparticles as anti-corrosive inhibitor on mild steel (MS) in 1.0 M hydrochloric acid has been tested at various concentrations and various temperatures. The methodological work was achieved by gravimetric measurement methods complemented with surface analysis. The synthesized inhibitor concentrations were 0.1 mM to 0.5 mM and the temper
... Show MoreIn this study, the melting-cooling method was used to prepare the chalcogenide compound S60-Se40-X-PbX. Four samples were obtained by partial replacement of Selenium with Lead in the weight ratios x = 0, 10, 20, and 30, respectively. The materials were mixed separately, ground, placed in quartz ampoules, and heated to 500 degrees Celsius. After conducting several operations on the samples, their insulating properties were studied, represented by the real dielectric constant and the imaginary dielectric constant, and the electrical conductivity was measured as a function of the frequency. It was found that partial replacement plays an impo