This article proposes a new technique for determining the rate of contamination. First, a generative adversarial neural network (ANN) parallel processing technique is constructed and trained using real and secret images. Then, after the model is stabilized, the real image is passed to the generator. Finally, the generator creates an image that is visually similar to the secret image, thus achieving the same effect as the secret image transmission. Experimental results show that this technique has a good effect on the security of secret information transmission and increases the capacity of information hiding. The metric signal of noise, a structural similarity index measure, was used to determine the success of colour image-hiding techniques within ANN. The results of the ANN were in sequence: 41.2813, 0.6914. The results of the ANN were in sequence 41.2813, 0.6914. These results provide insights into how well the hidden information is concealed within the image and the extent to which the visual integrity of the image is preserved.
This study aimed to detect of contamination of milk and local soft cheese with Staphylococcus aureus and their enterotoxins with attempt to detect the enterotoxin genes in some isolates of this bacteria. A total of 120 samples, 76 of raw milk and 44 of soft cheese were collected from different markets of Baghdad city. Enterotoxins in these samples were detected by VIDAS Set 2 system and it was found that enterotoxin A is present in a rate of 44.74% in milk samples and in a rate 54.50% in cheese samples. While other enterotoxins B, C, D, E were not found in any rate in any samples.
Through the study 60 isolates obtained from milk and cheeses were identified as Staphylococcus aureus by cultural, morphological and biochemical test by u
Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability
... Show MoreThe calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreObjective: is to determine the level of awareness concerning the reproductive health among adolescent girls in
Baghdad City.
Methodology: A cross sectional study was performed in order to assess the level of awareness regarding reproductive
health among 180 adolescent school girls in the age 12-18 years from five secondary schools in Al-Seder Sector in
Baghdad city, the data was collected by direct interview using constructed questionnaire to obtain socio-demographic
characteristics and level of awareness related to reproductive health. The study started from September 2012 to
January 2013.
Results: the results show that the highest percentage of girls (47.7%) was in age (17-18) year's age, (54.5%) at 4th class
se
Pregnancy at an early age of life is a major challenge. The consequences of this problem have an impact on the quality of life of the young mother and her family, and determines an important risk for her offspring. The son of a teenage mother has, in general, greater risks than that of a mother of more than 20 years. The aim of this study is to determine the prevalence and outcome of teenage pregnancy. A descriptive data base study was conducted at Al-Elwia Maternity Teaching hospital in the period from January 1, 2019 to the end of June 2019 within the age between 12 and 19 years old. The mean age of the mother was 17.4 ±1.5 years. The mean age of the father was 23.9 ± 5.7 years with (69.5%) with Vaginal delivery and most of the
... Show MoreThe practice of self medication is continuously increasing worldwide due to its important roles in curing minor conditions or symptoms. This study was conducted to evaluate the factors associated with self medication practice of Iraqi respondents residing in Baghdad City. This study was designed as cross sectional study in which data was collected via direct interviews with respondents using a previously prepared questionnaire. This study investigated 348 respondents from different age groups. The majority of respondents were male aged between 30-60 years, married with secondary or academic level of education and employed with accepted monthly income. The main reason for practicing self medication was previous experience with the same condi
... Show MoreActive worms have posed a major security threat to the Internet, and many research efforts have focused on them. This paper is interested in internet worm that spreads via TCP, which accounts for the majority of internet traffic. It presents an approach that use a hybrid solution between two detection algorithms: behavior base detection and signature base detection to have the features of each of them. The aim of this study is to have a good solution of detecting worm and stealthy worm with the feature of the speed. This proposal was designed in distributed collaborative scheme based on the small-world network model to effectively improve the system performance.