Preferred Language
Articles
/
HBjjKZgBVTCNdQwC8bqb
SAR-HDP: Non-parametric Topic Model for Aspect categorisation based on online reviews
...Show More Authors

Aspect categorisation and its utmost importance in the eld of Aspectbased Sentiment Analysis (ABSA) has encouraged researchers to improve topic model performance for modelling the aspects into categories. In general, a majority of its current methods implement parametric models requiring a pre-determined number of topics beforehand. However, this is not e ciently undertaken with unannotated text data as they lack any class label. Therefore, the current work presented a novel non-parametric model drawing a number of topics based on the semantic association present between opinion-targets (i.e., aspects) and their respective expressed sentiments. The model incorporated the Semantic Association Rules (SAR) into the Hierarchical Dirichlet Process (HDP), named (SAR-HDP). The phrase-based (or aspect-based) Bayesian model (SAR-HDP) did not consider the words sentence being drawn from a single topic due to the presence of multiple aspects in a single review, which belonged to a multiple-aspect topic (i.e., category). Beyond its consideration of the semantic information for aspect identi cation, the proposed model further upheld the semantic information discerned between the drawn topics and aspects identi ed to maintain topic consistency. Empirical investigation showed that the approach positioned successfully outperformed standard parametric models and nonparametric models in terms of aspect categorisation when subjected to restaurant and hotel reviews sourced from Amazon and TripAdvisor.

View Publication
Publication Date
Fri Jan 31 2025
Journal Name
Joiv : International Journal On Informatics Visualization
RC5 Performance Enhancement Based on Parallel Computing
...Show More Authors

This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Aug 23 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Face mask detection based on algorithm YOLOv5s
...Show More Authors

Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on

... Show More
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques
...Show More Authors

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (19)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
A Control Program for Hydropower Operation Based on Minimizing the Principal Stress Values on the Dam Body: Mosul Dam Case Study
...Show More Authors

This study examines the vibrations produced by hydropower operations to improve embankment dam safety. This study consists of two parts: In the first part, ANSYS-CFX was used to generate a three-dimensional (3-D) finite volume (FV) model to simulate a vertical Francis turbine unit in the Mosul hydropower plant. The pressure pattern result of the turbine model was transformed into the dam body to show how the turbine unit's operation affects the dam's stability. The upstream reservoir conditions, various flow rates, and fully open inlet gates were considered. In the second part of this study, a 3-D FE Mosul dam model was simulated using an ANSYS program. The operational turbine model's water pressure pattern is conveyed t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 02 2019
Journal Name
Journal Of Educational And Psychological Researches
A training program for chemistry teachers based on the knowledge economy and its impact on the productive thinking of their students
...Show More Authors

       The current research aims to build a training program for chemistry teachers based on the knowledge economy and its impact on the productive thinking of their students. To achieve the objectives of the research, the following hypothesis was formulated:

   There is no statistically significant difference at (0.05) level of significance between the average grades of the students participating in the training program according to the knowledge economy and the average grades of the students who did not participate in the training program in the test of productive thinking. The study sample consisted of (288) second intermediate grade students divided into (152) for the control group

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 07 2019
Journal Name
Construction Innovation
A hybrid conceptual model for BIM in FM
...Show More Authors
Purpose

The purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.

Design/methodology/approach
... Show More
View Publication
Scopus (32)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Hydrology
Complementary data-intelligence model for river flow simulation
...Show More Authors

View Publication
Crossref (87)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Cpwr
Development of a workforce sustainability model for construction
...Show More Authors

Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Geological Journal
Geological Model for Mauddud Reservoir Khabaz Oil Field
...Show More Authors

The Mauddud reservoir, Khabaz oil field which is considered one of the main carbonate reservoirs in the north of Iraq. Recognizing carbonate reservoirs represents challenges to engineers because reservoirs almost tend to be tight and overall heterogeneous. The current study concerns with geological modeling of the reservoir is an oil-bearing with the original gas cap. The geological model is establishing for the reservoir by identifying the facies and evaluating the petrophysical properties of this complex reservoir, and calculate the amount of hydrocarbon. When completed the processing of data by IP interactive petrophysics software, and the permeability of a reservoir was calculated using the concept of hydraulic units then, there

... Show More
Crossref