Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.
DBN Rashid, IMPAT: International Journal of Research in Humanities, Arts, and Literature, 2016 - Cited by 5
Background: The efficacy of educational strategies is crucial for nursing students to competently perform pediatric procedures like nasogastric tube insertion. Specific Background: This study evaluates the effectiveness of simulation, blended, and self-directed learning strategies in enhancing these skills among nursing students. Knowledge Gap: Previous research lacks a comprehensive comparison of these strategies' impacts on skill development in pediatric nursing contexts. Aims: The study aims to assess the effectiveness of different educational strategies on nursing students' ability to perform pediatric nasogastric tube insertions. Methods: A pre-experimental design was employed at the College of Nursing, University of Baghdad, i
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreQJ Rashid, IH Abdul-Abbas, MR Younus, PalArch's Journal of Archaeology of Egypt/Egyptology, 2021 - Cited by 4
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreAbstract The purpose of this study, teach the art of performing Olympic lifts (snatch and, clean and jerk) using the two methods are instructional (self-learning associated with the model) and (reverse style of partial way). Identify the effectiveness of these methods in learning the art of performance and style of the best Olympic lifting in the learning and retention of novice for Olympic lifts. The research sample consisted of 16 lifters were selected purposively representing specialist center for the care of athletic talent to weightlifting for ages 14 years. The sample was divided into two experimental, Each group (8) eight weightlifters. The experimental group used the style of the first self-learning associated with the m
... Show Moreملخص البحث
تبحث الدراسھ عن تنفیذ افضل لمفھوم التعلم مدى الحیاة كھیكل موجھ للسیاسة التربویة في العراق بشكل عام وفي
التعلیم العالي بشكل خاص. تحدد الدراسة استراتجیات التعلم مدى الحیاة وتناقش اھمیتھ وسماتھ الرئیسیة لتسھیل
الوصول الى فرص تعلم متمیز و ملائم لحاجات الطلبة مدى الحیاة، كما تناقش دور الجامعة في تحقیق ھذا الھدف.
The current research aims to reveal the strength of education and the direction of the relationship between the formal thinking and learning methods of Kindergarten department students. To achieve this objective, the researcher developed a scale of formal thinking according to the theory of (Inhelder & Piaget 1958) consisting of (25) items in the form of declarative phrases derived from the analysis of formal thinking skills based on a professional situation that students are expected to interact with in a professional way. The research sample consisted of (100) female students selected randomly who were divided into four groups based on the academic stages, the results revealed that The level of formal thinking of the main sample is
... Show MoreDue to the need for controlling and regulating of feed pellet. Pellet that is imported or locally manufactured is accompanied by cracking and crumbling percentage that occur during transporting and distributing to animals, using conveyors and mechanical feeders. This study aimed to determine the effect of particle size and die holes diameter in the machine on broiler feed pellets quality in pellet durability, pellet direct measurement, pellet expansion, and pellet length. Three particle size 2, 4, and 6 mm, and three diameters of die holes in the machine 3, 4, and 5 mm, have been used. The results showed that changing the particle size from 2 to 4 then to 6 mm led to a significant decrease in pellet durability and pellet lengths, pe
... Show More