Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.
Background: Diabetes is defined by the World Health Organization as a metabolic disorder characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. Families are co-regulating systems in which the stresses and strains of one family member affect the well-being of another member of the family. Caregivers of children with chronic illness report experiencing more parental stress than parents of healthy children.
Objective: A descriptive cross-sectional study had been conducted in four centers of endocrine diseases in Baghdad city and data was collected by using self-administered questionnaire regarding qua
... Show MorePolycystic ovary syndrome (PCOS) is one of the most common endocrine disorder. To determine the metabolic disorders in women with PCOS, (25) women with PCOS ages (15 - 47) years have been investigated and compared with (20) healthy individuals. All the studied groups were carried out to measure fasting blood sugar, (anti-GAD Ab, anti β-islet cell Ab by IFAT) and measured insulin level by ELISA. There was significant elevation in the concentration of fasting blood sugar than in control groups (p ≤ 0.05) and there was negative results for anti-GAD Ab and anti β-islet cell Ab by IFAT test for serum of women with PCOS, while there was significant differences in the insulin level for women with PCOS compared with control groups (p ≤ 0.05),
... Show MorePolycystic ovary syndrome (PCOS) is one of the most common endocrine disorder. To determine the metabolic disorders in women with PCOS, (25) women with PCOS ages (15 - 47) years have been investigated and compared with (20) healthy individuals. All the studied groups were carried out to measure fasting blood sugar, (anti-GAD Ab, anti ?-islet cell Ab by IFAT) and measured insulin level by ELISA. There was significant elevation in the concentration of fasting blood sugar than in control groups (p ? 0.05) and there was negative results for anti-GAD Ab and anti ?-islet cell Ab by IFAT test for serum of women with PCOS, while there was significant differences in the insulin level for women with PCOS compared with control groups (p ? 0.05), these
... Show MoreThe aim of this study to identify patterns of cerebral control (right and left) for second grade students in the collage of physical education and sports science of the University of Baghdad, as well as identify the definition of theThe Effect of Using the Bybee Strategy(5ES) according to Brain Control Patterns in Learning a Kinetic Series on Floor exercises in Artistic Gymnastics for menمجلة الرياضة المعاصرةالمجلد 19 العدد 1 عام 2020effect using the (Bybee) strategy (5ES) according to brain control patterns inlearning a Kinetic series on floor exercises In artistic gymnastics for men, andidentify the best combination between the four research groups learn, use Finderexperimental method research sample consi
... Show MoreThis research attempts to find the association between single nucleotide polymorphism (SNP) of IL2+166 gene (rs2069763) and type 2 diabetes mellitus (T2DM) in a sample of Iraqi patients. A total of 44 patients and 55 apparently healthy volunteers were genotyped for the SNP using polymerase chain reaction test. Three genotypes (GG, GT, and TT) corresponding to two alleles (G and T) were found to have SNP. Both study groups’ genotypes had a good agreement for the analysis of Hardy-Weinberg Equilibrium. The results revealed increased frequencies between the observed and expected GG and TT genotypes and IL2+166 SNP T allele in T2DM patients (40.9 vs. 40.0 %; OR = 1.04; 95% CI, 0.47 - 2.31), whereas the values in the control group were
... Show MoreThe financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreBackground: Type 2 diabetes mellitus (T2DM) is considered a global disease as it affects over 150 million people worldwide, a number that is supposed to be doubled by 2025. High glucose levels, in vitro, appear to raise the extent of LDL oxidation, and glycated LDL is more prone to oxidative modification.Objective: To investigate the relationship between serum level of vitamin E and lipid profile in patients with type II DM.Methods: This study involved 28 patients suffering from type II DM diagnosed 1-4 years ago and with age ranged from 17 -60 years old, with different residence around Basra ; In addition to 56 apparently healthy persons matched in age and sex to the patients as a control group. The medical histories were taken and Gene
... Show More