Preferred Language
Articles
/
HBfQsJIBVTCNdQwC5b4Y
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.

Scopus Crossref
View Publication
Publication Date
Tue Apr 26 2022
Journal Name
International Journal Of Health Sciences
narrative review of nutritional status among iraqi adults with type 2 diabetes
...Show More Authors

Type 2 diabetes is a global public health problem especially in middle east countries and Iraq has not spared from this pandemic. The prevalence in Iraq. and rank in Middle East. Beside increasing in prevalence- also poor glucose control. Nutrition plays a critical role. This paper narratively review variables that affect  reduce the incidence of T2DM in Iraq and affect nutritional status among Iraqi withT2DM. The factors contribute  to T2DM were high rates of obesity and overweight, as well as levels of body fat indicate a high prevalence of poor glycemic control. Likewise, levels of physical activity are low among older Iraqis.

View Publication
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fusion: Practice And Applications
Proposed Framework for Semantic Segmentation of Aerial Hyperspectral Images Using Deep Learning and SVM Approach
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Nov 07 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Early detection of first degree relatives to type-II diabetes mellitus
...Show More Authors

Objective(s): The study aims to assess the early detection of early detection of first degree relatives to type-II
diabetes mellitus throughout the diagnostic tests of Glycated Hemoglobin A1C. (HgbA1C), Oral Glucose Tolerance
Test (OGTT) and to find out the relationship between demographic data and early detection of first degree
relatives to type-II diabetes mellitus.
Methodology: A purposive "non-probability" sample of (200) subjects first degree relatives to type-II diabetes
mellitus was selected from National Center for Diabetes Mellitus/Al-Mustansria University and Specialist Center
for Diabetes Mellitus and Endocrine Diseases/Al-kindy. These related persons have presented the age of (40-70)
years old. A questio

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Computer Science And Mobile Computing
Color Image Compression of Inter-Prediction Base
...Show More Authors

Publication Date
Tue Jan 01 2019
Journal Name
Opcion, Año
Active Learning And Creative Thinking
...Show More Authors

Active Learning And Creative Thinking

Publication Date
Sun Mar 15 2020
Journal Name
Journal Of The College Of Education For Women
Second Language Learning and Its Relationship with the Third Language Learning: Statistical Study: China
...Show More Authors

The exchanges in various fields,like economics, science, culture, etc., have been enhanced unceasingly among different countries around the world in the twenty-first century, thus, the university graduate who masters one foreign language does not meet the need of the labor market in most countries.So, many universities began to develop new programs to cultivate students who can use more foreign languages to serve the intercultural communication. At the same time, there is more scientific research emerged which is related to the relationship between the second and third languages. This humble research seeks to explain the relevant concepts and analyze the real data collected from Shanghai International Studies University in China, to expl

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Medical Sciences
Comparison of ABGAR Score among Gestational, Pregestational Diabetes and Normal Pregnant Women
...Show More Authors

Background: The Apgar score is calculated based on the five features: heart rate, reflexes, color, muscle tone, and respiratory effort. Each element is scored from 0 to 2, with a total probable score of 10 at 1 minute and 5 minute. Aim: To study the influence of gestational diabetes mellitus (GDM) and diabetes mellitus on APGAR score in neonate. Materials and methods: The samples were studied from Department of Obstetrics and Gynaecology in Al-Imamain Al-Kadhimiyain (AS) Medical city, Baghdad Teaching Hospital and Al-Karkh Maternity Hospital in the period between 1 December 2016 and 1 may 2017, after obtaining the approval from Iraqi Ministry of Health. A total of 102 neonates were included in this study which includes 34 neonates of mother

... Show More
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
A Crime Data Analysis of Prediction Based on Classification Approaches
...Show More Authors

Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Thu Sep 15 2022
Journal Name
Knowledge And Information Systems
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref