Preferred Language
Articles
/
H0L_6JoBMeyNPGM3mtYF
Heterogeneous Traffic Management in SDN-Enabled Data Center Network Using Machine Learning-SPIKE Model
...Show More Authors

Software-Defined Networking (SDN) has evolved network management by detaching the control plane from the data forwarding plane, resulting in unparalleled flexibility and efficiency in network administration. However, the heterogeneity of traffic in SDN presents issues in achieving Quality of Service (QoS) demands and efficiently managing network resources. SDN traffic flows are often divided into elephant flows (EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes and long durations, account for a small amount of total traffic but require disproportionate network resources, thus causing congestion and delays for smaller MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they account for the vast bulk of traffic in data center networks. The incorrect use of network resources by EFs frequently disturbs the performance of MFs. To meet these issues, precise classification of network traffic has become crucial. This classification enables traffic-aware routing techniques. This paper offers a novel model for classifying SDN traffic into MF and EF using a spike neural network. Once identified, traffic is routed based on the classification results. For MF, the model uses the Dijkstra algorithm. For EF, the Widest Dijkstra algorithm is used. This model solves the difficulties of traffic heterogeneity in SDNs by integrating advanced classification techniques and strategic routing algorithms. It enables desirable resource allocation, eliminates congestion, and increases network performance and dependability. The models used have proven their efficiency by outperforming the traditional Software Defined Network and other algorithms in terms of: throughput by 60%, and 20%, bandwidth utilization by 5%, and 7%, packet loss by 50%, and latency by 60%, respectively.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (22)
Scopus Crossref
Publication Date
Thu Mar 06 2025
Journal Name
Aip Conference Proceedings
Solving 5th order nonlinear 4D-PDEs using efficient design of neural network
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of the Point Efficiency of Sieve Tray Using Artificial Neural Network
...Show More Authors

An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 13 2019
Journal Name
Spe Kuwait Oil & Gas Show And Conference
Optimization of Fracture Parameters for Hydraulic Fractured Horizontal Well in a Heterogeneous Tight Reservoir: An Equivalent Homogeneous Modelling Approach
...Show More Authors
Abstract<p>Building numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr</p> ... Show More
View Publication
Scopus (24)
Crossref (15)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Civil Engineering Journal
Factors Affecting Traffic Accidents Density on Selected Multilane Rural Highways
...Show More Authors

Estimations of average crash density as a function of traffic elements and characteristics can be used for making good decisions relating to planning, designing, operating, and maintaining roadway networks. This study describes the relationships between total, collision, turnover, and runover accident densities with factors such as hourly traffic flow and average spot speed on multilane rural highways in Iraq. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. The se

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Civil Engineering Journal
Factors Affecting Traffic Accidents Density on Selected Multilane Rural Highways
...Show More Authors

Estimations of average crash density as a function of traffic elements and characteristics can be used for making good decisions relating to planning, designing, operating, and maintaining roadway networks. This study describes the relationships between total, collision, turnover, and runover accident densities with factors such as hourly traffic flow and average spot speed on multilane rural highways in Iraq. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. The selection

... Show More
Preview PDF
Crossref (11)
Crossref
Publication Date
Sun Oct 02 2022
Journal Name
Engineering, Technology &amp; Applied Science Research
Statistical Modeling for Traffic Noise: The Case of Kirkuk City
...Show More Authors

The auditory system can suffer from exposure to loud noise and human health can be affected. Traffic noise is a primary contributor to noise pollution. To measure the noise levels, 3 variables were examined at 25 locations. It was found that the main factors that determine the increase in noise level are traffic volume, vehicle speed, and road functional class. The data have been taken during three different periods per day so that they represent and cover the traffic noise of the city during heavy traffic flow conditions. Analysis of traffic noise prediction was conducted using a simple linear regression model to accurately predict the equivalent continuous sound level. The difference between the predicted and the measured noise shows that

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Mar 04 2012
Journal Name
Baghdad Science Journal
Using fuzzy logic for estimating monthly pan evaporation from meteorological data in Emara/ South of Iraq
...Show More Authors

Evaporation is one of the major components of the hydrological cycle in the nature, thus its accurate estimation is so important in the planning and management of the irrigation practices and to assess water availability and requirements. The aim of this study is to investigate the ability of fuzzy inference system for estimating monthly pan evaporation form meteorological data. The study has been carried out depending on 261 monthly measurements of each of temperature (T), relative humidity (RH), and wind speed (W) which have been available in Emara meteorological station, southern Iraq. Three different fuzzy models comprising various combinations of monthly climatic variables (temperature, wind speed, and relative humidity) were developed

... Show More
View Publication Preview PDF
Crossref