Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The test room is thermally insulated and connected to a solar chimney which generates a convection current to draw the air out of the room through a heat exchanger. The heat exchanger was submerged in a water tank of 2 m length, 1 m width and 1 m height. It was also covered with a layer of soil mixture with a thickness of 10 cm. The experiment simulates the natural conditions of a shallow water surface, connected to the room from the other side. The study results revealed that the air temperature inside the test room was lower than that of the ambient air outside. Pearson correlation coefficient showed that there was a strong direct relationship between solar radiation, temperature and wind speed from one side and the cooling efficiency from the other side. Also, there was a negative correlation between relative humidity and cooling efficiency.
Azo dye ligand was produced by coupling the diazonium salt of 4aminoantipyrine with 2, 4-dimethylphenol. The structure of 1 azo compound was someone by elemental analyses, HNMR, FT-IR and UV-Vis spectroscopic mechanics. Metal complexes of nickel (II) and copper (II) have been performed and depicted. The formation of complexes has been identified by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectral process as well as, conductivity and magnetic properties quantifications. The nature of the complexes formed were studied succeed the mole ratio and continuous variation methods, Beer's law followed over a concentration 4 4 scope (1×10- - 3×10- M). High molar absorbtivity of the complex solutions were observed. Analytica
... Show MoreA laboratory experiment was carried out at the College of Agriculture University of Baghdad in 2017. The aim was to improve the anatomical and physiological traits of broad bean seedling under salt stress by soaking it in salicylic acid. The concentrations of salicylic acid were 0, 10, and 20 mg L-1 and the electrical conductivity levels were 0, 3, and 6 dS m-1. The complete randomized design was used with four replications. The increasing of salicylic acid concentration up to 10 mg L-1 led to increasing the stem cortex thickness, stem vascular bundles thickness, and root cortex thickness significantly by (34.9,36.7,and 55 μm) respectively, while the treatment of 20 mg L-1 led to decreasing these traits by (28.2, 27.8, and 48.1 μm), compa
... Show MoreThere is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreA series of lanthanide metal (???) complexes have been prepared from the new azo ligand, 3-(1-methyl-2-benzimidazolylazo)-Tyrosine (MBT). The structural feature were confirmed on the basis of their elemental analysis, metal content, molar conductance, magnetic measurement, FTIR, 1 HNMR and UV-Vis spectra studies. The isolated complexes were found to have a mole ratio (1:2) (metal:ligand) stoichiometry with the general formula [Ln(MBT)2]Cl (Ln(???) = La, Ce, Pr, Nd, Sm, Eu and Gd). The chelates were found to have octahedral structures. The FTIR spectra shows that the ligand (MBT) is coordinated to lanthanide ions as a N, N, O-tridentate anion via benzimidazole nitrogen, azo nitrogen and oxygen of hydroxyl after deprotonation. Com
... Show MoreThe aim of this work is synthesis of _Eoly (Vinyl-4-AminoBenzoate) (PVAB) from reaction of _Eoly Vinyl Alkohol PVA with 4-aminobenzoyl chloride in alkaline media. We also prepare the metal complexes of poly (vinyl- 4-aminobenzoate) and antimicrobial properties were evaluated by dilute method against five pathogenic bacteria (Escherichia coli, Shigella dysentery, Klebsiella pneumonae, Staphylococcus aureus, Staphylococcus Albus) and two fungal (Aspergillus Niger, Yeast). All polymer metal complexes showed different activities against the various microbial isolates. The polymer metal complexes showed higher activity than the free polymer.
Polarization is an important property of light, which refers to the direction of electric field oscillations. Polarization modulation plays an essential role for polarization encoding quantum key distribution (QKD). Polarization is used to encode photons in the QKD systems. In this work, visible-range polarizers with optimal dimensions based on resonance grating waveguides have been numerically designed and investigated using the COMSOL Multiphysics Software. Two structures have been designed, namely a singlelayer metasurface grating (SLMG) polarizer and an interlayer metasurface grating (ILMG) polarizer. Both structures have demonstrated high extinction ratios, ~1.8·103 and 8.68·104 , and the bandwidths equal to 45 and 55 nm for th
... Show More