Social interaction is the platform that enables people to connect and practice language. Active listening stimulates them to understand the language they are speaking. The problem of the study highlights that less attention to listening among speaking, reading, and writing skills causes the weakness of collaborative learning. This paper contributes to characterizing the effectiveness of collaborative learning in developing learner’s listening skills. It aims to underscore the role of target language learners as members of the learning groups and of the teacher in the collaborative learning process. 130 Iraqi EFL teachers from different colleges at the University of Baghdad participated in this study. The scores in the statistical data were measured in the 5 Likert scale using IBM Statistical Package for Social Software (SPSS) version 24. The research findings showed that the correlation between collaborative learning and listening skills significantly developed students' other fundamental language skills. The results showed that great attention is paid to reading and speaking skills while learning collaboratively. An essential limitation of this study is that it needs to address barriers encountered by collaborative learners to practice reflective listening. More research on pronunciation and grammar is necessary for improving listening skills.
The aim of the research is to identify psychological toughness and its relationship to some coordination, physical abilities and accuracy of some basic performance skills among the players of the Iraqi junior national handball team players. The hypothesis is the existence of a correlation between psychological toughness, coordination, physical abilities, and the accuracy of some basic skills performance among the players of the Iraqi junior national handball team players. The descriptive approach in the style of correlational relations used to suit the research problem, as the community was determined by (18) players for the Iraqi junior national handball team players, while the sample was (14) players, and the samp
... Show MoreOptical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm
... Show MoreBreast cancer is the most common malignancy affecting women's health, with an increasing incidence worldwide. This study aimed to measure the intracellular concentration of the hypoxia-inducible factor 1 α (HIF-1α), tumor suppression protein p53, and estradiol (E2) in tumor tissues of adult females with breast cancer and their relation to tumor grade, tumor size, and lymph node metastases (LNM). The study was conducted on 65 adult female participants with breast mass admitted to the operating theater in Al-Hussein Teaching Hospital and Al-Habboby Teaching Hospital in Nasiriyah, Iraq, from January to November 2021. Fresh breast tumor tissues were collated and homogenized for intracellular biochemical analysis using the enzyme-linked immuno
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreThe current research aims at: - Identifying the role played by the leadership in empowerment and organizational learning abilities and their reflection on the knowledge capital, and the extent to which these concepts can be applied effectively at Wasit University. The problem of research .... In a series of questions: The most important is that the dimensions leadership empowerment and distance learning organizational capacity correlation relationship and impact and significant statistical significance with the capital knowledge.
To understand the nature of the relationship and the impact between the variables, leadership was adopted by empowerment as the fir
... Show MoreThis study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreThe purpose of the current study was to explore the standards that teachers take into consideration when selecting and using assistive technology (AT), in addition to their knowledge and skills in this area. A quantitative, descriptive survey design was used and a convenience sample of 79 teachers of students with intellectual disabilities and autism spectrum disorder (ASD) participated in the current study. Based on the four main areas of the SETT Framework—student, environment, tasks, and tools—, teachers reported a lack consideration for most of the standards in each area. Among other findings, statistically significant differences were found between teachers’ standards of the SETT Framework, with teachers who had previous profe
... Show MoreObjective: To assess the clinical learning environment and clinical training for students' in maternal and child
health nursing.
Methodology: A descriptive study was conducted on non probability sample (purposive) of (175) students' in
Nursing College/ University of Baghdad for the period of June 19th to July 18th 2013. A questionnaire was used as a
tool of data collection to fulfill with objective of the study and consisted of three parts, including demographic,
clinical learning environment and clinical training for students' in maternal and child health nursing. Descriptive
statistical analyses were used to analyze the data.
Results: The results of the study revealed that the 65.1% of student at age which ranged b
The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show More