Social interaction is the platform that enables people to connect and practice language. Active listening stimulates them to understand the language they are speaking. The problem of the study highlights that less attention to listening among speaking, reading, and writing skills causes the weakness of collaborative learning. This paper contributes to characterizing the effectiveness of collaborative learning in developing learner’s listening skills. It aims to underscore the role of target language learners as members of the learning groups and of the teacher in the collaborative learning process. 130 Iraqi EFL teachers from different colleges at the University of Baghdad participated in this study. The scores in the statistical data were measured in the 5 Likert scale using IBM Statistical Package for Social Software (SPSS) version 24. The research findings showed that the correlation between collaborative learning and listening skills significantly developed students' other fundamental language skills. The results showed that great attention is paid to reading and speaking skills while learning collaboratively. An essential limitation of this study is that it needs to address barriers encountered by collaborative learners to practice reflective listening. More research on pronunciation and grammar is necessary for improving listening skills.
The major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
In this study, different methods were used for estimating location parameter and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment estimation (ME),and approximation estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile as estimation for distribution f
... Show MoreThere is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreThe performance evaluation process requires a set of criteria and for the purpose of measuring the level of performance achieved by the Unit and the actual level of development of its activities, and in view of the changes and of rapid and continuous variables surrounding the Performance is a reflection of the unit's ability to achieve its objectives, as these units are designed to achieve the objectives of exploiting a range of economic resources available to it, and the performance evaluation process is a form of censorship, focusing on the analysis of the results obtained from the achievement All its activities with a view to determining the extent to which the Unit has achieved its objectives using the resources available to it and h
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreThis study was carried out to determine the effects of some environmental variables on biodiversity index value of benthic invertebrates' community in samples that collected monthly from two adjacent sites nearby the confluence of Tigris and Diyala rivers within Baghdad city that’s from November 2007 - October 2008. Results showed differences in chemical and physical characteristics for each river. Where the annual averages of these characteristics in Rivers Tigris and Diyala respectively for: water temperature (20, 19) Cº, pH (8, 8), Dissolved oxygen DO(8,4 ) mg/l , EC(1152,2979)µc/cm , Turbidity (28,74) NTU, Total Hardness of CaCO3 (485,823)mg/l, and finally NO3 (4,6)mg/l. Concerning the biological groups, included types of Insect
... Show MoreAutoría: Nuha Mohsin Dhahi. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 5, 2022. Artículo de Revista en Dialnet.
Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show More