In this research investigation, a total of eighteen diverse tetra- and penta-lateral cyclic compounds were synthesized. These included 1,3,4-thiadiazole, thiazolidin-4-one (via an alternative method), 1,2,4-triazole, carbothioamide, thiazole-4-one, azetidin-2-one, and oxazole. The synthesis procedure entailed a sequence of reactions. The thiazolidine-4-one 1 was obtained by reaction p-aminobenzoic acid with thiosemicarbazide, followed by treatment with p-tolualdehyde to produce Schiff base 2. Reaction Schiff base 2 with mercaptoacetic acid in dry benzene was carried out to produce thiazolidine-4-one 3. In another synthesis pathway, the esterification of p-nitro benzoic acid with ethanol in the presence of sulfuric acid was obtained to formation of compound 4. Compound 4 was subsequently reacted with thiosemicarbazide, yielding compound 5. Cyclization of compound 5 was then achieved using 4% sodium hydroxide solution. This formed the 1,2,4-triazole heterocycle, designated compound 6. Thiosemicarbazone 7-9 were prepared by reaction of thiosemicarbazide with different aldehydes. Additionally, 2-substituted-1,3-thiazolidine-4-one derivatives 10-12 were synthesized through the reaction of thiosemicarbazone with chloroacetic acid in the presence of anhydrous sodium acetate. The Oxazole derivative 15 was obtained through a series of reactions starting with the reaction of p-amino benzoic acid with ethyl chloroacetate, resulting in compound 13. Compound 13 was then treated with urea to obtain compound 14, followed by a reaction with 4-phenyl phenacyl bromide to yield the final product, the Oxazole derivative 15. The 2-aminooxadiazole derivative 16 was synthesized by reaction urea with 4-bromoacetophenone which was reacted with 4-bromobenzaldehyde to produce Schiff base derivative 17. Finally, β-lactam 18 is obtained through reaction Schiff base with chloroacetyl chloride in the presence of triethyl amine. FT-IR, 1H-NMR, and 13C-NMR spectroscopy were used to confirm their proposed structures. Moreover, the antibacterial and antifungal activities of certain synthesized compounds, specifically 2,3,6,11,13,15,17, and 18, were assessed against Staphylococcus aureus, Escherichia coli, and Candida albicans, demonstrating encouraging outcomes.Keywords: Antibacterial, antifungal activity, oxadaizole, heterocyclic derivatives, Oxazole.
The purpose of this research work is to synthesize conjugates of some NSAIDs with sulfamethoxazole as possible mutual prodrugs to overcome the local gastric irritation of NSAID with free carboxyl group by formation of ester linkage that supposed to remain intact in stomach and may hydrolyze in intestine chemically or enzymatically; in addition to that attempting to target the synthesized derivative to the colon by formation of azo group that undergo reduction only by colonic bacterial azo reductaze enzyme to liberate the parent compound to act locally (treatment of inflammation and infections in colon)
Four complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy- 4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal acti
... Show MoreFour complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy-4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal activ
... Show MoreVolatile organic compounds (VOCs) from uninfested and infested broccoli plant samples with green peach aphid
توصيف الاساليب الارهابية وسبل مواجهتها
Artemisia is a perennial wild shrub with large branches and compound leaves. Artemisia contains about 400 types, and its medical importance is due to the presence of many active substances and compounds such as volatile oils, alkaloids and flavonoids, glycosides, saponins, tannins, and coumarins. This study was designed to study the effect of the aqueous extract of the fruit of the Artemisia plant on the organs of the body, as well as to know its ability to activate the hepatic enzyme alanine transaminase (ALT/GPT). The fruit of this shrub was extracted using the measurement technique gas chromatography-mass spectrometry (GC/MASS) and organic solvent hexane and ethyl acetate in one to one ratio. It contained 21 compounds, a high percentage
... Show MoreNew ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures. Keywords: pyrimidin-2-amine, acetyl isothiocyanate, complexes, Antimicrobial activity
New ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures
The Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreIn this work, of New Ligand [(E)-5-hydroxy-4-(3-(4-methoxy phenyl) acryl amido) naphthalene -1- sulfonic acid] (ANS) was prepared by reflexing reaction of 4-amino-5-hydroxy naphthalene sulfonic acid with para methoxy cinnamic acid, this produced and described chemical was employed as ligand to prepare tri and di-organotin complexes by condensation reaction with the salts of organotin chloride (phenyl, butyl, and methyl tin chloride). Specialized methods, including elemental analysis, (tin and proton) magnetic resonance, and infrared spectra, were used to identify the complexes. DPPH (2,2-diphenyl-1-picrylhydrazyl) and CUPRAC (Cupric Reducing Antioxidant Capacity) are both commonly used methods for measuring antioxidant capacity in v
... Show More