The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
In light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show MoreThere are many images you need to large Khoznah space With the continued evolution of storage technology for computers, there is a need nailed required to reduce Alkhoznip space for pictures and image compression in a good way, the conversion method Alamueja
The Purpose of this research is a comparison between two types of multivariate GARCH models BEKK and DVECH to forecast using financial time series which are the series of daily Iraqi dinar exchange rate with dollar, the global daily of Oil price with dollar and the global daily of gold price with dollar for the period from 01/01/2014 till 01/01/2016.The estimation, testing and forecasting process has been computed through the program RATS. Three time series have been transferred to the three asset returns to get the Stationarity, some tests were conducted including Ljung- Box, Multivariate Q and Multivariate ARCH to Returns Series and Residuals Series for both models with comparison between the estimation and for
... Show MoreContours extraction from two dimensional echocardiographic images has been a challenge in digital image processing. This is essentially due to the heavy noise, poor quality of these images and some artifacts like papillary muscles, intra-cavity structures as chordate, and valves that can interfere with the endocardial border tracking. In this paper, we will present a technique to extract the contours of heart boundaries from a sequence of echocardiographic images, where it started with pre-processing to reduce noise and produce better image quality. By pre-processing the images, the unclear edges are avoided, and we can get an accurate detection of both heart boundary and movement of heart valves.
The state and partial level densities were calculated using the corresponding formulas that are obtained in the frame work of the exciton model with equidistant spacing model (ESM) and non-ESM (NESM). Different corrections have been considered, which are obtained from other nuclear principles or models. These corrections are Pauli Exclusion Principle, surface effect, pairing effect, back shift due to shell effect and bound state effect . They are combined together in a composite formula with the intention to reach the final formula. One-component system at energies less than 100 MeV and mass number range (50-200) is assumed in the present work. It was found that Williams, plus spin formula is the most effective approach to the composite
... Show MoreThe present paper deals with experimental investigation of the performance of air cooled split air conditioner, with evaporative water mist pre cooling to increase the cooling capacity and reduce the consumption power under hot and dry climate. This investigation considers how the performance can be enhanced by using water mist to pre-cool ambient air entering the condensers by adiabatic cooling process which depends on the ambient air wet bulb temperature; as well the condensing temperature and condensing pressure will be decreased accordingly. So the cooling capacity would be increased and consumption power would be decreased, consequently the energy ratio, EER would be improved. The performance of air cooled air conditioner with water
... Show MoreThis Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.
Long memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show MoreMany people take protein supplements in an effort to gain muscle. However, there is some controversy as to whether this is really effective. There is evidence suggesting that consuming high level s of protein may in fact have negative side effects for health. The current study included 29 young Iraqi building muscles in two different groups (taken and not protein supplements) (age range=17-31 years), the cases were selected from family, friends, college students, and Gyms), from November 2014 to March 2015. A careful history was obtained from each volunteer including age, duration of sports, type of supplements, and family history of diseases. Some biochemical parameters like (glucose, urea, uric acid, creatinine, bilirubin, serum protei
... Show More