The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
Image Fusion Using A Convolutional Neural Network
The study discusses the marketing profile of electoral candidates and politicians especially the image that takes root in the minds of voters has become more important than the ideologies in the technological era or their party affiliations and voters are no longer paying attention to the concepts of a liberal, conservative, right-wing or secular, etc. while their interests have increased towards candidates. The consultants and image experts are able to make a dramatic shift in their electoral roles. They, as specialists in the electoral arena, dominate the roles of political parties.
The importance of the study comes from the fact that the image exceeds its normal framework in our contemporary world to become political and cultural
JPEG is most popular image compression and encoding, this technique is widely used in many applications (images, videos and 3D animations). Meanwhile, researchers are very interested to develop this massive technique to compress images at higher compression ratios with keeping image quality as much as possible. For this reason in this paper we introduce a developed JPEG based on fast DCT and removed most of zeros and keeps their positions in a transformed block. Additionally, arithmetic coding applied rather than Huffman coding. The results showed up, the proposed developed JPEG algorithm has better image quality than traditional JPEG techniques.
تعد مجالات الصورة وعلاماتها الحركية حضوراً دلالياً للاتصال العلامي واتساعاً في الرابطة الجدلية ما بين الدوال ومداليها، التي تقوم بها الرؤية الاخراجية لإنتاج دلالات اخفائية تمتلك جوهرها الانتقالي عبر الافكار بوصفها معطيات العرض، ويسعى التشفير الصوري الى بث ثنائية المعنى داخل الحقول المتعددة للعرض المسرحي، ولفهم المعنى المنبثق من هذه التشفيرات البصرية، تولدت الحاجة لبحث تشكيل هذه التشفيرات وكيفية تح
... Show More