The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
Background: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phosphoric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two enamel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from β-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exp
... Show MorePolycystic ovary syndrome (PCOS) referring to a syndrome that is recognized as a life-course disease and has both metabolic and reproductive signs; main pathophysiological cause includes insulin resistance, hyperandrogenism, and oxidative stress state. The study aimed to assess the impact of combining Myoinositol and Metformin, the main insulin-sensitizing drugs, on improving clinical, metabolic, and hormonal parameters in females with PCOS. A clinical trial that was prospective, randomized, and comparative on 54 patients (aged 18-40 y) are divided into three groups: group1 patients allocated to receive Myo-inositol(4g), group2 patients assigned to receive Metformin(1g) and group3 patients assigned to receive Myo-inositol(4g) + Metformin
... Show MoreThis study was attempted to determine optimum conditions, for Glutathione s-Transferase enzyme, in sera of three groups diabetic patients type1 depending on duration of disease without complications compared with control group. The aim of this study was to find optimum conditions were determined such as (pH, Substrate Concentration, Temperature, Incubation time, Enzyme concentration, and effect of(0.15M)(0.25M) of mono divalent compounds). And to find the kinetics parameters in the three groups of diabetic patients when compared with control. It was found optimum pH(8.5,4.5,2.5,6.5).Temperatures(20cº,40cº,50cº,30cº). Incubation times (7min, 4min, 4min, 5min) substrate concentrations (12µl, 10µl, 5µl, 10µl) enzyme concentra
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreThis research dealt with the analysis of murder crime data in Iraq in its temporal and spatial dimensions, then it focused on building a new model with an algorithm that combines the characteristics associated with time and spatial series so that this model can predict more accurately than other models by comparing them with this model, which we called the Combined Regression model (CR), which consists of merging two models, the time series regression model with the spatial regression model, and making them one model that can analyze data in its temporal and spatial dimensions. Several models were used for comparison with the integrated model, namely Multiple Linear Regression (MLR), Decision Tree Regression (DTR), Random Forest Reg
... Show MoreA new computer-generated optical element called a monochrome image hologram (MIH) is described. A real nonnegative function to represent the transmittance of a synthesized hologram is used. This technique uses the positions of the samples in the synthesized hologram to record the phase information of a complex wavefront. Synthesized hologram is displayed on laser printer and is recorded on a film. Finally the reconstruction process is done using computerized .
Medical image security is possible using digital watermarking techniques. Important information is included in a host medical image in order to provide integrity, consistency, and authentication in the healthcare information system. This paper introduces a proposed method for embedding invisible watermarking in the 3D medical image. The cover medical image used is DICOM which consists of a number of slices, each one representing a sense, firstly must separate the ROI (Region of Interest) and NROI (Not Region Of Interest) for each slice, the separation process performed by the particular person who selected by hand the ROI. The embedding process is based on a key generated from Arnold's chaotic map used as the position of a pixel in
... Show MoreTime crosses one of the most important principles that are agreed upon in contracts, because the temporal dimension has a significant impact on all contract provisions and is not limited to a certain group of them. French and Arab legal jurists alike called for this dimension to be given special attention. That is the term of the contract term; To try to limit the temporal elements, clarify their provisions and distinguish between them, but in the Arab world it did not receive the same attention that it received in the West.