The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
In this research the Empirical Bayes method is used to Estimate the affiliation parameter in the clinical trials and then we compare this with the Moment Estimates for this parameter using Monte Carlo stimulation , we assumed that the distribution of the observation is binomial distribution while the distribution with the unknown random parameters is beta distribution ,finally we conclude that the Empirical bayes method for the random affiliation parameter is efficient using Mean Squares Error (MSE) and for different Sample size .
The pre - equilibrium and equilibrium double differential cross
sections are calculated at different energies using Kalbach Systematic
approach in terms of Exciton model with Feshbach, Kerman and
Koonin (FKK) statistical theory. The angular distribution of nucleons
and light nuclei on 27Al target nuclei, at emission energy in the center
of mass system, are considered, using the Multistep Compound
(MSC) and Multistep Direct (MSD) reactions. The two-component
exciton model with different corrections have been implemented in
calculating the particle-hole state density towards calculating the
transition rates of the possible reactions and follow up the calculation
the differential cross-sections, that include MS
Forecasting is one of the important topics in the analysis of time series, as the importance of forecasting in the economic field has emerged in order to achieve economic growth. Therefore, accurate forecasting of time series is one of the most important challenges that we seek to make the best decision, the aim of the research is to suggest employing hybrid models to predict daily crude oil prices. The hybrid model consists of integrating the linear component, which represents Box Jenkins models, and the non-linear component, which represents one of the methods of artificial intelligence, which is the artificial neural network (ANN), support vector regression (SVR) algorithm and it was shown that the proposed hybrid models in the predicti
... Show MoreThe letter is defined as a message directed by the sender to another party, the future. The aim is to convey, clarify or explain a particular point or subject, and in the form of direct oral communication through speech that contains a set of words and words, The future can discuss the sender directly to exchange ideas with each other, or it may be written and in this case does not require direct interaction between the matchmaker and the recipient. As a result of the different sources and topics of the discourse, and the different types of categories addressed to the speech, and the number, it has been divided into several types.
And schools of discourse analysis emerged in the early eighties of the last century and has spread and ha
Molasse medium containing different concentrations of (NH4)2 SO4, (NH4)3 PO4, urea, KCI, and P2O5 were compared with the medium used for commercial production of C. utilis in a factory south of Iraq. An efficient medium, which produced 19. 16% dry wt. and 5. 78% protein, was developed. The effect of adding various concentrations of micronutrients (FeSO4, 7T20, MnSO4. 7H20, ZnSO4. 7E20) was also studied. Results showed that FeSo4. 7H20 caused a noticeable increase in both dry wt. and protein content of the yeast.
The aim of the present study was to develop theophylline (TP) inhalable sustained delivery system by preparing solid lipid microparticles using glyceryl behenate (GB) and poloxamer 188 (PX) as a lipid carrier and a surfactant respectively. The method involves loading TP nanoparticles into the lipid using high shear homogenization – ultrasonication technique followed by lyophilization. The compositional variations and interactions were evaluated using response surface methodology, a Box – Behnken design of experiment (DOE). The DOE constructed using TP (X1), GB (X2) and PX (X3) levels as independent factors. Responses measured were the entrapment efficiency (% EE) (Y1), mass median
... Show MoreMost Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mo
... Show MoreIn medical practice, nonsteroidal anti-inflammatory drugs (NSAIDs) are often used to treat osteoarthritis and rheumatoid arthritis. Ibuprofen is a well-known NSAID, analgesic, and antipyretic medication. This chemical is an active ingredient of several oral medications that are offered in tablet, gel pellet, and syrup forms and has higher efficacy, tolerance, and side effect rates than other compounds, including pyrazolone derivatives. We present a unique plasma-assisted desorption/ionization mass spectrometry (PADI-MS) approach for improving pharmaceutically important solids using an ibuprofen tablet as a model solid sample. The goal of the study is to create an innovative mass spectrometric method that could be used for quick and accur
... Show More