Preferred Language
Articles
/
GheZh5IBVTCNdQwCRLMn
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.

Scopus Crossref
View Publication
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Mj Journal On Applied Mathematics
Mathematical models for estimation the concentration of heavy metals in soil
...Show More Authors

Publication Date
Tue Dec 30 2014
Journal Name
College Of Islamic Sciences
Excuse for ignorance in Islamic law         Financial transactions: (Contemporary Applied Models)
...Show More Authors

The researcher highlighted in his research on an important subject that people need, which is the excuse of ignorance in Islamic law. , As the flag of light and ignorance of darkness. Then the researcher lameness of the reasons for research in this subject as it is one of the assets that should be practiced by the ruler and the judge and the mufti and the diligent and jurisprudent, but the public should identify the issues that ignore ignorance and issues that are not excused even if claimed ignorance.
 Then the researcher concluded the most important results, and recommendations that he wanted to set scientific rules for students of science and Muslims in general, to follow the issues of legitimacy and learn its provisions and i

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
The Use of Particle Swarm Algorithm to Solve Queuing Models with Practical Application
...Show More Authors

This paper includes the application of Queuing theory with of Particle swarm algorithm or is called (Intelligence swarm) to solve the problem of The queues and developed for General commission for taxes /branch Karkh center in the service stage of the Department of calculators composed of six  employees , and it was chosen queuing model is a single-service channel  M / M / 1 according to the nature of the circuit work mentioned above and it will be divided according to the letters system for each employee, and  it was composed of data collection times (arrival time , service time, departure time)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 01 2008
Journal Name
2008 International Conference On Computer And Communication Engineering
A binary Particle Swarm Optimization for attacking knapsacks Cipher Algorithm
...Show More Authors

View Publication
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
A Novel Gravity ‎Optimization Algorithm for Extractive Arabic Text Summarization
...Show More Authors

 

An automatic text summarization system mimics how humans summarize by picking the most ‎significant sentences in a source text. However, the complexities of the Arabic language have become ‎challenging to obtain information quickly and effectively. The main disadvantage of the ‎traditional approaches is that they are strictly constrained (especially for the Arabic language) by the ‎accuracy of sentence feature ‎functions, weighting schemes, ‎and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Retina Based Glowworm Swarm Optimization for Random Cryptographic Key Generation
...Show More Authors

The biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Nov 17 2019
Journal Name
Journal Of Interdisciplinary Mathematics
Fuzzy preinvexity via ranking value functions with applications to fuzzy optimization problems
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Mar 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Diffusion Bonding of Pure Copper (OFHC) with Stainless Steel 304L: .
...Show More Authors

This work deals with determination of optimum conditions of direct diffusion bonding welding of austenitic stainlesssteel type AISI 304L with Oxygen Free High Conductivity (OFHC) pure copper grade (C10200) in vacuum atmosphere of (1.5 *10-5 mbr.). Mini tab (response surface) was applied for optimizing the influence of diffusion bonding parameters (temperature, time and applied load) on the bonding joints characteristics and the empirical relationship was evaluated which represents the effect of each parameter of the process. The yield strength of diffusion bonded joint was equal to 153 MPa and the efficiency of joint was equal to 66.5% as compared with hard drawn copper. The diffusion zone reveals high microhardness than coppe

... Show More
View Publication Preview PDF
Crossref (4)
Crossref