The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new activation function, regular parameter tuning, and an improved learning rate in the later stages of training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4, Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image caption tasks.
Objectives: to evaluate patient knowledge with hemodialysis and to determine the effectiveness of Self-regulation Fluid Program on Patients with hemodialysis self-efficacy for fluid adherence in Al-Diwaniyah Teaching Hospital.
Methodology: A quasi-experimental design (two group design: pre-test and post-test) was used. This study was conducted in Al-Diwaniya Teaching Hospital for the period from (15th of October 2018 to 20th of May 2019) on a non-probability (purposive) sample consisting of (60 patients) treatment in hemodialysis units. A questionnaire was built as a data collection tool and consisted of four parts:
First part: Demographic characteristics of the pati
... Show MoreThe absorption spectrum for three types of metal ions in different concentrations has been studying experimentally and theoretically. The examination model is by Gaius model in order to find the best fitting curve and the equation controlled with this behavior. The three metal ions are (Copper chloride Cu+2, Iron chloride Fe+3, and Cobalt chloride Co+2) with different concentrations (10-4, 10-5, 10-6, 10-7) gm/m3. The spectroscopic study included UV-visible and fluorescence spectrum for all different concentrations sample. The results refer to several peaks that appear from the absorption spectrum in the high concentration of all metal ions solution.
... Show Moremixtures of cyclohexane + n-decane and cyclohexane + 1-pentanol have been measured at 298.15, 308.15, 318.15, and 328.15 K over the whole mole fraction range. From these results, excess molar volumes, VE , have been calculated and fitted to the Flory equations. The VE values are negative and positive over the whole mole fraction range and at all temperatures. The excess refractive indices nE and excess viscosities ?E have been calculated from experimental refractive indices and viscosity measurements at different temperature and fitted to the mixing rules equations and Heric – Coursey equation respectively to predict theoretical refractive indices, we found good agreement between them for binary mixtures in this study. The variation of th
... Show MoreThe paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms
... Show MoreThe possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model ba
... Show MoreIn this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show More