Charge transfer complex formation method has been applied for the spectrophotometric determination of erythromycin ethylsuccinate, in bulk sample and dosage form. The method was accurate, simple, rapid, inexpensive and sensitive depending on the formed charge- transfer complex between cited drug and, 2,3- Dichloro-5,6-dicyano-p- benzoquinone (DDQ) as a chromogenic reagent. The formed complex shows absorbance maxima at 587 nm against reagent blank. The calibration graph is linear in the ranges of (10 - 110) μg.mL-1 with detection limit of 0.351μg.mL-1. The results show the absence of interferences from the excipients on the determination of the drug. Therefore the proposed method has been successfully applied for the determination of erythromycin ethylsuccinate in pharmaceutical preparations.
In this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show MoreDevelopment of a precise and delicate reaction has been acquired for the determination of vancomycin hydrochloride using batch and cloud point extraction (CPE) methods. The first method is based on the formation of azo dye as a result of diazotized dapsone coupled with vancomycin HCl (VAN) in a basic medium. The sensitivity of this reaction was enhanced by utilizing a nonionic surfactant (Triton X-114) and the cloud point extraction technique (second method). The azo dye formed was extracted into the surfactant-rich phase, dissolved in ethanol and detected at λmax 440 nm spectrophotometrically. The reaction was investigated using both batch and CPE methods (with and without extraction), and a simple comparison between the two
... Show MoreA new, Simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sulfamethoxazole (SMZ) drug in pure and dosage forms. This method based on the reaction of sulfamethoxazole (SMZ) with 1,2-napthoquinone-4-sulphonic acid (NQS) to form Nalkylamono naphthoquinone by replacement of the sulphonate group of the naphthoquinone sulphonic acid by an amino group. The colored chromogen shows absorption maximum at 460 nm. The optimum conditions of condensation reaction forms were investigated by (1) univariable method, by optimizing the effect of experimental variables (different bases, reagent concentration, borax concentration and reaction time), (2) central composite design (CCD) including the effect of
... Show MoreA new, accurate, precise and economic two spectrophotometric methods for determination of Paracetamol (Par), Ibuprofen (Ibu), and Caffeine (Caf) were suggested. Those methods were the first and second ratio derivative spectrum using a double devisor. Par, Ibu, and Caf showed many useful peaks for their quantified determination. The validity of all analysis modes for determination of the three compounds, peak to baseline, peak area and peak to peak were according to ICH. The linearity of two methods was between 5 µg/ml as a lower concentration and 50 µg/ml as the highest concentration for three compounds. Recovery percentage was around 100% and relative standard deviation was less than 2.6%. The methods were applied successfully in the
... Show MoreNew, simple and sensitive batch and Flow-injecton spectrophotometric methods for the determination of Thymol in pure form and in mouth wash preparations have been proposed in this study. These methods were based on a diazotization and coupling reaction between Thymol and diazotized procaine HCl in alkaline medium to form an intense orange-red water-soluble dye that is stable and has a maximum absorption at 474 nm. A graphs of absorbance versus concentration show that Beer’s law is obeyed over the concentration range of 0.4-4.8 and 4-80 µg.ml-1 of Thymol, with detection limits of 0.072 and 1.807 µg.ml-1 of Thymol for batch and FIA methods respectively. The FIA procedure sample throughput was 80 h-1. All different chemical and physical e
... Show MoreA procedure for the mutual derivatization and determination of thymol and Dapsone was developed and validated in this study. Dapsone was used as the derivatizing agent for the determination of thymol, and thymol was used as the derivatizing agent for the determination of Dapsone. An optimization study was performed for the derivatization reaction; i.e., the diazonium coupling reaction. Linear regression calibration plots for thymol and Dapsone in the direct reaction were constructed at 460 nm, within the concentration range of 0.3-7 μg ml-1 for thymol and 0.3-4 μg ml-1 for Dapsone, with limits of detection 0.086 and 0.053 μg ml-1, respectively. Corresponding plots for the cloud point extraction of thymol and Dapsone were constructed
... Show MoreThe study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed a
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show More