This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulated on the basis of earthquake acceleration data recorded from the El Centro Imperial Valley Earthquake. The effectiveness of the adaptive synergetic control was verified and assessed via numerical simulation, and a comparison study was conducted between the adaptive and classical versions of synergetic control (SC). The vibration suppression index was used to evaluate both controllers. The numerical simulation showed the capability of the proposed adaptive controller to stabilize and to suppress the vibration of a building subjected to earthquake. In addition, the adaptive controller successfully kept the estimated viscosity and stiffness coefficients bounded.
Background: Colorectal cancer (CRC) is a major killer, and nonalcoholic fatty liver disease (NAFLD) affects almost one-quarter of the global population. The aim of the study is to Investigate the correlation between nonalcoholic fatty liver disease (NAFLD) and an increased risk of colorectal cancer (CRC), as well as the relationship between liver function enzymes and specific serum biomarkers in CRC patients with NAFLD. Methods: A case-control study involving 60 participants was conducted from February to August 2022. The patients with colon cancer were examined at Baghdad Medical City's Al-Amal Hospital for Radiation and Nuclear Medicine and Oncology Teaching Hospital, and blood samples were taken. Thirty patients with NAFLD who ha
... Show MoreThe general objective of the research is to better understand changes in land cover and their impact on climatic factors by measuring changes in land cover for the Baghdad city for the period 1999-2021 and evaluating changes in land cover and measuring changes in climatic factors (relative humidity and evaporation). This study from 1999 to 2021 and in two different seasons: the April of the growing season and August the dry season. When using the supervised classification method to determine the differences, the results showed remarkable changes, the study showed the spatial variations in LC from 1999 to 2021 as follows: increase in the vegetation and water bodies during April and decrease this in August while the soil and built up decreas
... Show MoreElectrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreStroke is the second largest cause of death worldwide and one of the most common causes of disability. However, several approaches have been proposed to deal with stroke patient rehabilitation like robotic devices and virtual reality systems, researchers have found that the brain-computer interfaces (BCI) approaches can provide better results. In this study, the electroencephalography (EEG) dataset from post-stroke patients were investigated to identify the effects of the motor imagery (MI)-based BCI therapy by investigating sensorimotor areas using frequency and time-domain features and to select particular methods that help in enhancing the MI-based BCI systems for stroke patients using EEG signal processing. Therefore, to detect
... Show MoreRecently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical.
... Show MoreThis work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera
... Show MoreThis paper presents the electrical behavior of the top contact/ bottom gate of an organic field-effect transistor (OFET) utilizing Pentacene as a semiconductor layer with two distinctive gate dielectric materials Polyvinylpyrrolidone (PVP) and Zirconium oxide (ZrO2) were chosen. The influence of the monolayer and bilayer gates insulator on OFET performance was investigated. MATLAB software was used to simulate and determine the electrical characteristics of a device. The output and transfer characteristics were studied for ZrO2, PVP and ZrO2/PVP as an organic gate insulator layer. Both characteristics show a high drain current at the gate dielectric ZrO2/PVP equal to -0.0031A and -0.0015A for output and transfer characteristics respectively
... Show More