The aim of the study is to detect the malignant conditions of the skin tumors through the features of optical images. This research included some of image processing techniques to detect skin cancer as a strong threat to human beings' lives. Using image processing and analysis methods to improves the ability of pathologists to detect this disease leading to more specified diagnosis and better treatment of them. One hundred images were collected from Benign and Malignant tumors and some appropriate image features were calculated, like Maximum Probability, Entropy, Coefficient of Variation, Homogeneity and Contrast, and using Minimum Distance method to separate these images. These features with Minimum Distance as a proposed making decision algorithm resulted in a good accuracy of 95%.
Contours extraction from two dimensional echocardiographic images has been a challenge in digital image processing. This is essentially due to the heavy noise, poor quality of these images and some artifacts like papillary muscles, intra-cavity structures as chordate, and valves that can interfere with the endocardial border tracking. In this paper, we will present a technique to extract the contours of heart boundaries from a sequence of echocardiographic images, where it started with pre-processing to reduce noise and produce better image quality. By pre-processing the images, the unclear edges are avoided, and we can get an accurate detection of both heart boundary and movement of heart valves.
This study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This
... Show MoreThis study was conducted with the aim to extract and purify a polyphenolic compound “ Resveratrol†from the skin of black grapes Vitis vinifera cultivated in Iraq. The purified resveratrol is obtained after ethanolic extraction with 80% v/v solution for fresh grape skin, followed by acid hydrolysis with 10% HCl solution then the aglycon moiety was taken with organic solvent
( chloroform). Using silica gel G60 packed glass column chromatography with mobile phase benzene: methanol: acetic acid 20:4:1 a
... Show MoreThe process involved isolating E. faecium from the gut of honeybees, screening the bacterium for bacteriocin-like inhibitory substance (BLIS), evaluating its impact on the expression of the mexA gene in multidrug-resistant (MDR) P. aeruginosa, and determining the role of bacteriocin in treating infected wounds in mice through histopathological examination. After evaluating the best circumstances for producing BLIS, it was discovered that glucose was a superior carbon source and yeast extract was the best source of nitrogen. The pH was found to be 5, the ideal incubation time was 72 hours, and ammonium sulfate salt was used for partial purification at 80% saturation. The identification of MDR P. aeruginosa isolates from pus infection
... Show MoreAbstract
Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The sim
... Show MoreDue to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The simulation shows the behavior of optical
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreGroupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show More