Many new heterocyclic compounds including 4-thiazolidinones containing indole with triazole units were described. The new Schiff bases [VII] a, b and [VIII] a, b synthesized by condensation acid hydrazides [II],[VI] with different (aromatic) aldehydes in absolute ethanol. The refluxing equimolar amounts of the Schiff bases ([VII] a, b,[VIII] a, b) with thioglycolic acid in benzene led to get thiazolidin-4-ones derivatives ([IX] a, b and [X] ad). Finally, the new derivatives [XI] ac run out via the reacted compound [IX] a with different n-alkyl bromide (methyl bromide, ethyl bromide, and butyl bromide)
Many new heterocyclic compounds including 4-thiazolidinones containing indole with triazole units were described. The new Schiff bases [VII]a, b and [VIII]a,b synthesized by condensation acid hydrazides [II],[VI] with different (aromatic) aldehydes in absolute ethanol. The refluxing equimolar amounts of the Schiff bases ([VII]a,b, [VIII]a,b) with thioglycolic acid in benzene led to get thiazolidin-4-ones derivatives ([IX]a,b and [X]a-d). Finally, the new derivatives [XI]a-c run out via the reacted compound [IX]a with di
The present work involved preparation of new hetro cyclic polyacrylamides (1-9) using reaction of polyacryloyl chloride with 2-aminobenzothiazole which prepeard by thiocyanogen method in the presence of a suitable solvent and amount tri ethyl amine (Et3N) with heating. The structure confirmation of polymers were proved using FT-IR,1H-NMR,C13NMR and UV spectroscopy.Other physical properties including softening and melting points, and solubility of the polymers were also measured.
Three new hydrazone derivatives of Etodolac were synthesized and evaluated for their anti-inflammatory activity by using egg white induced paw edema method. All the synthesized target compounds were characterized by CHN- microanalysis, FT-IR spectroscopy, and 1HNMR analysis. The synthesis of the target (P1-P3) compounds was accomplished following multistep reaction procedures. The synthesized target compounds were found to be active in reducing paw edema thickness and their anti-inflammatory effect was comparable to that of the standard (Etodolac).
In this work 5-methylene-yl - (2-methy –oxazole-4-one) (1H) imidazole (1) were synthesized from the reaction of L-Histidine with acetic anhydride and which converted to the of 5-methylene-yl-(2-methyl 3-amino imidazole-4-one)-1H-imidazole (2) by reaction with hydrazine hydrate. Schiff bases (3-6) were synthesized from the reaction of compound (2) with different aromatic aldehyde. Reaction of compounds (3-6) with chloroacetyl chloride gives azetidinone one derivatives (7-10). These compounds were characterized by FT-IR and some of them with 1H-NMR and 13C-NMR spectroscopy.
In the current work, aromatic amines and alkyl halides have been converted to the corresponding azides 2a‒d and 4a-d by the reaction with sodium nitrite and sodium azide respectively for amines and sodium azide for halides. Then, dipropargyl ether derivative of D-mannose 8 has been synthesized from diacetone mannose that has been obtained by the treatment of D-mannose (5) with dry acetone in the presence of sulfuric acid. Then, aldol condensation has been used to prepare diol 7 from the mannose diacetonide 6. The reaction of compound 7 with propargyl bromide in alkaline media has been afforded dipropargyl
... Show MoreBackground: Chemotherapeutic medication treatment for cancer is typically used in conjunction with other techniques as part of a routine regimen. It is well established that the capacity of different chemotherapeutic drugs to induce apoptosis is correlated with their anticancer efficacy. Quinazolinone-based drugs have demonstrated excellent responses from several cancer cell types. These substances have a lot of potential for use as building blocks in the creation of apoptosis inducers. Objective: To assess the new quinazolinone derivatives (M1 and M2) that were recently synthesized for their potential to halt wound healing and to use the acridine orange/propidium iodide (AO/PI) double stain to assess their capacity to induce apopto
... Show More