Developing smart city planning requires integrating various techniques, including geospatial techniques, building information models (BIM), information and communication technology (ICT), and artificial intelligence, for instance, three-dimensional (3D) building models, in enabling smart city applications. This study aims to comprehensively analyze the role and significance of geospatial techniques in smart city planning and implementation. The literature review encompasses (74) studies from diverse databases, examining relevant solutions and prototypes related to smart city planning. The focus highlights the requirements and preparation of geospatial techniques to support the transition to a smart city. The paper explores various aspects, such as the advantages and challenges of geospatial techniques, data collection and analysis methodologies, and case studies showcasing successful implementations of smart city initiatives. The research concludes that geospatial techniques are instrumental in driving the development of smart cities. By analyzing and synthesizing the outcomes of the reviewed articles, this study establishes the essential contribution of geospatial techniques in successfully realizing the vision of smart cities.
The vast advantages of 3D modelling industry have urged competitors to improve capturing techniques and processing pipelines towards minimizing labour requirements, saving time and reducing project risk. When it comes to digital 3D documentary and conserving projects, laser scanning and photogrammetry are compared to choose between the two. Since both techniques have pros and cons, this paper approaches the potential issues of individual techniques in terms of time, budget, accuracy, density, methodology and ease to use. Terrestrial laser scanner and close-range photogrammetry are tested to document a unique invaluable artefact (Lady of Hatra) located in Iraq for future data fusion sc
This research studies the effect of particle packing density on sintering TiO2 microstructure. Sintering experiment was conducted on compacts involving of monodisperse spherical TiO2 particles. The experimental results are modeled using L2-Regression technique in studing the effect of two theoretical values of 55% and 69% of initial packing densities. The mathematical simulation shows that the lower values of density compacts sintered fast to theoretical density and this reflects that particle packing density improved densification rate because of the competing influence of grain growth at higher values of densities.
The study of economic growth indicators is of fundamental importance in estimating the effectiveness of economic development plans, as well as the great role it plays in determining appropriate economic policies in order to optimally use the factors that lead to the dynamics of growth in Iraq, especially during a certain period of time. The gross domestic product (GDP) at current prices), which is considered a part of the national accounts, which is considered as an integrated dynamic of statistics that produces in front of policy makers the possibility of determining whether the economy is witnessing a state of expansion or evaluating economic activity and its efficiency in order to reach the size of the overall economy. The research aims
... Show MoreStereo lithography (SLA) three-dimensional (3D) printing process is a type of additive manufacturing techniques that uses digital models from computer-aided design to automatically produce customized 3D objects. Around 30 years, it has been widely utilized in the manufacturing, design, engineering, industrial sectors and its applications in dentistry for manufacturing prosthodontics are very important. The stereo lithography technology is highly regarded because it can produce items with excellent precision especially when selecting the best process parameters. This review article offers a useful and scientific summary of SLA three-dimensional printing technology and its brief history. The specific type of 3D printers which is SLA type b
... Show MoreStereo lithography (SLA) three-dimensional (3D) printing process is a type of additive manufacturing techniques that uses digital models from computer-aided design to automatically produce customized 3D objects. Around 30 years, it has been widely utilized in the manufacturing, design, engineering, industrial sectors and its applications in dentistry for manufacturing prosthodontics are very important. The stereo lithography technology is highly regarded because it can produce items with excellent precision especially when selecting the best process parameters. This review article offers a useful and scientific summary of SLA three-dimensional printing technology and its brief history. The specific type of 3D printers which is SLA t
... Show MoreThe research aims to presenting a number of scenarios for the investment of the marshes. The problem of research problem was that there is no in-depth analysis of the marshes environment. The traditional methods of the environmental analysis are insufficient. The research community is represented by the decision makers in Maysan Governorate. The research led to proposing of three scenarios with statement the requirements for the success of each one. The most important conclusions are that the three proposed scenarios for marshes investment depend on the availability of the required volunteers for each scenario. The higher the availability of the requirements, the more optimistic the scenario becomes. If t
... Show MoreIt has increasingly been recognised that the future developments in geospatial data handling will centre on geospatial data on the web: Volunteered Geographic Information (VGI). The evaluation of VGI data quality, including positional and shape similarity, has become a recurrent subject in the scientific literature in the last ten years. The OpenStreetMap (OSM) project is the most popular one of the leading platforms of VGI datasets. It is an online geospatial database to produce and supply free editable geospatial datasets for a worldwide. The goal of this paper is to present a comprehensive overview of the quality assurance of OSM data. In addition, the credibility of open source geospatial data is discussed, highlighting the diff
... Show MoreIt has increasingly been recognised that the future developments in geospatial data handling will centre on geospatial data on the web: Volunteered Geographic Information (VGI). The evaluation of VGI data quality, including positional and shape similarity, has become a recurrent subject in the scientific literature in the last ten years. The OpenStreetMap (OSM) project is the most popular one of the leading platforms of VGI datasets. It is an online geospatial database to produce and supply free editable geospatial datasets for a worldwide. The goal of this paper is to present a comprehensive overview of the quality assurance of OSM data. In addition, the credibility of open source geospatial data is discussed, highlight
... Show MoreOpenStreetMap (OSM) represents the most common example of online volunteered mapping applications. Most of these platforms are open source spatial data collected by non-experts volunteers using different data collection methods. OSM project aims to provide a free digital map for all the world. The heterogeneity in data collection methods made OSM project databases accuracy is unreliable and must be dealt with caution for any engineering application. This study aims to assess the horizontal positional accuracy of three spatial data sources are OSM road network database, high-resolution Satellite Image (SI), and high-resolution Aerial Photo (AP) of Baghdad city with respect to an analogue formal road network dataset obtain
... Show More