Developing smart city planning requires integrating various techniques, including geospatial techniques, building information models (BIM), information and communication technology (ICT), and artificial intelligence, for instance, three-dimensional (3D) building models, in enabling smart city applications. This study aims to comprehensively analyze the role and significance of geospatial techniques in smart city planning and implementation. The literature review encompasses (74) studies from diverse databases, examining relevant solutions and prototypes related to smart city planning. The focus highlights the requirements and preparation of geospatial techniques to support the transition to a smart city. The paper explores various aspects, such as the advantages and challenges of geospatial techniques, data collection and analysis methodologies, and case studies showcasing successful implementations of smart city initiatives. The research concludes that geospatial techniques are instrumental in driving the development of smart cities. By analyzing and synthesizing the outcomes of the reviewed articles, this study establishes the essential contribution of geospatial techniques in successfully realizing the vision of smart cities.
Survival analysis is widely applied to data that described by the length of time until the occurrence of an event under interest such as death or other important events. The purpose of this paper is to use the dynamic methodology which provides a flexible method, especially in the analysis of discrete survival time, to estimate the effect of covariate variables through time in the survival analysis on dialysis patients with kidney failure until death occurs. Where the estimations process is completely based on the Bayes approach by using two estimation methods: the maximum A Posterior (MAP) involved with Iteratively Weighted Kalman Filter Smoothing (IWKFS) and in combination with the Expectation Maximization (EM) algorithm. While the other
... Show MoreShatt Al-Hilla was considered one of the important branches of Euphrates River that supplies irrigation water to millions of dunams of planted areas. It is important to control the velocity and water level along the river to maintain the required level for easily diverting water to the branches located along the river. So, in this research, a numerical model was developed to simulate the gradually varied unsteady flow in Shatt AL-Hilla. The present study aims to solve the continuity and momentum (Saint-Venant) equations numerically to predict the hydraulic characteristics in the river using Galerkin finite element method. A computer program was designed and built using the programming language FORTRAN-77. Fifty kilometers was consid
... Show MoreIn front of the serious deterioration of the elements of the environment, new convictions arose the need to integrate into the global environmental concerns as being one and the issue of shared responsibility and the impact of this conviction, the evolution of the environment protection law in many countries, including Algeria. Due to the multiplicity of perceptions about the environmental result of multiple scientific disciplines, the legislative concept emerged to protect the environment, which includes prevention and rational management and conservation and restoration and repair.
Environmental planning for the various governments and countries aims to avert disasters and achieve the
... Show MoreAbstract
The study presents a mathematical model with a disaggregating approach to the problem of production planning of a fida Company; which belongs to the ministry of Industry. The study considers disaggregating the entire production into 3 productive families of (hydraulic cylinders, Aldblatt (dampers), connections hydraulics with each holds similar characteristics in terms of the installation cost, production time and stock cost. The Consequences are an ultimate use of the available production capacity as well as meeting the requirements of these families at a minimal cost using linear programming. Moreover, the study considers developing a Master production schedule that drives detailed material and production requi
... Show MoreA new two-way nesting technique is presented for a multiple nested-grid ocean modelling system. The new technique uses explicit center finite difference and leapfrog schemes to exchange information between the different subcomponents of the nested-grid system. The performance of the different nesting techniques is compared, using two independent nested-grid modelling systems. In this paper, a new nesting algorithm is described and some preliminary results are demonstrated. The validity of the nesting method is shown in some problems for the depth averaged of 2D linear shallow water equation.
Deep Learning Techniques For Skull Stripping of Brain MR Images
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
In today's digital era, the importance of securing information has reached critical levels. Steganography is one of the methods used for this purpose by hiding sensitive data within other files. This study introduces an approach utilizing a chaotic dynamic system as a random key generator, governing both the selection of hiding locations within an image and the amount of data concealed in each location. The security of the steganography approach is considerably improved by using this random procedure. A 3D dynamic system with nine parameters influencing its behavior was carefully chosen. For each parameter, suitable interval values were determined to guarantee the system's chaotic behavior. Analysis of chaotic performance is given using the
... Show More