One of the most important processes to obtain gasoline with high octane numbers is isomerization. In this paper, Pt/TiO2 was prepared successfully by using the sol–gel method by hydrolysis of titanium tetraisopropoxide as a titania source with ethanol and then platinum was loaded on the synthesized catalyst; the result shows that the sample prepared has a good crystallinity with a surface area of about 85 m2 /g and a pore volume of 0.1938 cm3 /g, while XRD shows that the prepared sample was anatase phase. The efect of both temperature and liquid hourly space velocity of the prepared catalyst was achieved by hydroisomerization of n-hexane in a fxed bed reactor with a temperature of 200–275 °C and LHSV 0.5–2h−1. The results show that the conversion of n-hexane was increased with increasing temperature and decreasing LHSV; the maximum conversion achieved at temperature 275 °C and 0.5 h−1 was 63.54% at atmospheric pressure.
In this paper, we introduce the concept of fuzzy n-fold KUideal in KU-algebras, which is a generalization of fuzzy KU-ideal of KUalgebras and we obtain a few properties that is similar to the properties of fuzzy KU-ideal in KU-algebras, see [8]. Furthermore, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.
Abstract
The catalytic cracking conversion of Iraqi vacuum gas oil was studied on large and medium pore size (HY, HX, ZSM-22 and ZSM-11) of zeolite catalysts. These catalysts were prepared locally and used in the present work. The catalytic conversion performed on a continuous fixed-bed laboratory reaction unit. Experiments were performed in the temperature range of 673 to 823K, pressure range of 3 to 15bar, and LHSV range of 0.5-3h-1. The results show that the catalytic conversion of vacuum gas oil increases with increase in reaction temperature and decreases with increase in LHSV. The catalytic activity for the proposed catalysts arranged in the following order:
HY>H
... Show MoreMDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over of length and 28 have been found.
In this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper
The Dielectric properties of EP/TiO2 and MgO nanocomposite at
a frequency range of (102-106 Hz) were studied. The composite were
prepared with the state volume ratio (0, 0.05, 0.1) for EP/TiO2 and
MgO respectively. The impedance, dielectric constant and dielectric
loss were found decrease with frequency increase.
In this research we prepared nanofibers by electrospinning from
poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission)
was studied and found to be at 772 nm, several process parameters
were such as concentration of TiO2 , and the effect of distance from
nozzle tip to the grounded collector (gap distance). The result of the
lower concentration of, the smaller the diameter of nanofiber is.
Increasing the gap distance will affect nanofibers diameter
ِabstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission) was studied and found to be at 772 nm, several process parameters were such as concentration of TiO2 , and the effect of distance from nozzle tip to the grounded collector (gap distance). The result of the lower concentration of, the smaller the diameter of nanofiber is. Increasing the gap distance will affect nanofibers diameter.
The Ozone Monitoring Instrument (OMI) measures the reflected solar radiation in the ultraviolet and visible part in the spectral range that is between 270 and 500 nm, using two channels with a spectral resolution of about 0.5 nm. Ground-level tropospheric ozone is one of the air pollutants of most concern. In the troposphere, near the Earth's surface, human activities lead to ozone concentrations several times higher than the natural background level. To evaluate the ozone distribution over Iraq, the ozone data from OMI were analyzed using geostatistical techniques. Theoretical spherical models provided the best fit for all monthly experimental variograms. The parameters of these variograms (sill, range and nugget) wer
... Show MoreMobile ad-hoc networks (MANETs) are composed of mobile nodes communicating through wireless medium, without any fixed centralized infrastructure. Providing quality of service (QoS) support to multimedia streaming applications over MANETs is vital. This paper focuses on QoS support, provided by the stream control transmission protocol (SCTP) and the TCP-friendly rate control (TFRC) protocol to multimedia streaming applications over MANETs. In this study, three QoS parameters were considered jointly: (1) packet delivery ratio (PDR), (2) end-to-end delay, (3) and throughput. Specifically, the authors analyzed and compared the simulated performance of the SCTP and TFRC transport protocols for delivering multimedia streaming over MANETs.
... Show MoreSnS has been widely used in photoelectric devices due to its special band gap of 1.2-1.5 eV. Here, we reported on the fabrication of SnS nanosheets and the effect of synthesis condition together with heat treatment on its physical properties. The obtained band gap of the SnS nanosheets is in the rage of 1.37-1.41 eV. It was found that the photo-current density of a thin film comprised of SnS nanosheets could be enhanced significantly by annealing treatment. The maximum photo-current density of the stack structure of FTO/SnS/CdS/Pt was high as 389.5 mu A cm(-2), rendering its potential application in high efficiency solar hydrogen production.