Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train the model contains 1365 fundus images from the ROP screening. This dataset was gathered from the Private Clinic Al-Amal Eye center in Baghdad, Iraq. The models above are ensemble through voting classifier techniques to increase the performance. The proposed method had an overall accuracy of 88.82 percent when employing the voting classifier. On the other hand, EfficientNetB5 has outperformed other models in terms of accuracy with 87.27%.
Learning Disabilities are described as a hidden and puzzling disability. Children with these difficulties have the potential to hide weaknesses in their performance because they are a homogenous group of disorders that consist of obvious difficulties in acquiring and using reading, writing, Mathematical inference. Thus, the research aims to identify the disabilities of academic learning in (reading, writing, mathematics), identify the problems of behavior (general, motor, social). Identify the relationship among behaviour problems. The research also aims to identify the counseling needs to reduce the behavioral problems. The researcher adopted the analytical descriptive method by preparing two main tools for measuring learning disabiliti
... Show MoreOnline examination is an integral and vital component of online learning. Student authentication is going to be widely seen when one of these major challenges within the online assessment. This study aims to investigate potential threats to student authentication in the online examinations. Adopting cheating in E-learning in a university of Iraq brings essential security issues for e-exam . In this document, these analysts suggested a model making use of a quantitative research style to confirm the suggested aspects and create this relationship between these. The major elements that might impact universities to adopt cheating electronics were declared as Educational methods, Organizational methods, Teaching methods, Technical meth
... Show MoreThe problem of the paper focused on the role of the learning organization in the crisis management strategy, and the extent of the actual interest in both the learning organization and the crisis management and aimed at diagnosing and analyzing that and surrounding questions. The Statistical Package for the Social Sciences (SPSS) program was used to calculate the results and the correlation coefficient between the two main variables. The methodology was descriptive and analytical. The case study was followed by a questionnaire that was distributed to a sample of 31 teachers. The paper adopted a seven-dimensional model of systemic thinking that encourages questioning, empowerment, provision of advanced technologies, and strategic lea
... Show MoreBackground A prospective clinical study was
performed to compare the efficacy of the use of lowmolecular-
weight heparin group (enoxparin group)
with control group in the prevention of deep-vein
thrombosis after total knee arthroplasty.
Aim of the study: to assess the prevalence of DVT
after total knee arthroplasty and evaluate the
importance of the use of low molecular weight
heparin in the prevention of this DVT.
Methods Thirty-three patients undergoing total
knee arthroplasty were randomly divided into two
groups. One group consisted of 12 patients who
received no prophylaxis with an anticoagulant (the
control group), other group consisted of 21 patients
who received the low-molecular-weight h
Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show MoreThe present study aims at empirically investigating the effect of vocabulary learning strategies on Iraqi intermediate school students’vocabulary performance and reading comprehension. The population of the present study includes all the 1st year male students of Al-Wark’a intermediate school of Al-Risafa 1/ General Directorate of Education for the first course of the academic year (2015-2016). To achieve the aim of the study ,a pre-test and post-test after (5) weeks of experiment are administrated .The sample of the present study consists of (100) subjects :(50) students as an experimental group and other (50) students as a control group . The subj
... Show MoreThe Coronavirus Disease 2019 (COVID-19) pandemic has caused an unprecedented disruption in medical education and healthcare systems worldwide. The disease can cause life-threatening conditions and it presents challenges for medical education, as instructors must deliver lectures safely, while ensuring the integrity and continuity of the medical education process. It is therefore important to assess the usability of online learning methods, and to determine their feasibility and adequacy for medical students. We aimed to provide an overview of the situation experienced by medical students during the COVID-19 pandemic, and to determine the knowledge, attitudes, and practices of medical students regarding electronic medical education.
... Show MoreThis study aimed to assess orthodontic postgraduate students’ use of social media during the COVID-19 lockdown. Ninety-four postgraduate students (67 master’s students and 27 doctoral students) were enrolled in the study and asked to fill in an online questionnaire by answering questions regarding their use of social media during the COVID-19 lockdown. The frequency distributions and percentages were calculated using SPSS software. The results showed that 99% of the students used social media. The most frequently used type of social media was Facebook, 94%, followed by YouTube, 78%, and Instagram, 65%, while Twitter and Linkedin were used less, and no one used Blogger. About 63% of the students used elements of social media to l
... Show More