Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by response surface methodology (RSM). According to the results, nickel foam made an excellent choice as cathode material. The pH value was adjusted at 3 and the airflow at 10 L/h for all experiments. It was found that the optimal conditions were current density of 4.23 mA/cm2, Fe2+ dosage of 0.1 mM, and time of 5 h to obtain the removal rates of phenol and chemical oxygen demand (COD) of 81.335% and 79.1%, respectively. The results indicated that time had the highest effect on the phenol and COD removal efficiencies, while the impact of current density was the lowest. The high R2 value of the model equation (98.03%) confirmed its suitability.
The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses and dimensions of the laser w
... Show MoreIn this paper, we investigate and study quantum theoretical of quark-gluon interaction modeling in QGP matter formatted. In theoretical modeling, we can use a flavor number, strength coupling, critical energy Tc = 190 MeV, system energy (400-650)MeV, fugacity of quark and gluon, and photon energy in range of 1-10 GeV parameter to calculation and investigation spectrum of photon rate. We calculation and study the photon rate produced through bremsstrahlung processes from the stable QGP matter. The photon rate production from cg → dgy systems at bremsstrahlung processes are found to be increased with increased fugacity, decreased strength coupling, decreased the photons energy and temperature of system. The photons rate in cg → dgy is inc
... Show MoreThe process of discovering pharmaceuticals is of great importance in our contemporary life, in a way that without life becomes almost impossible, as this process is the first building block in the field of pharmaceutical industries to search for new methods and means of treatment and treatment. But in fact, the fact that talking about this process is not that simple and easy, because this process is complicated and difficult in a way that makes it take a time range that in some cases reaches what is permissible ten years to reach a chemical formula that can be used later in the manufacturing process Pharmacokinetics, and during this long period of time, this process will have a set of effects, some of which are specific to the researcher di
... Show MoreINTRODUCTION: A range of tools and technologies are at disposal for the purpose of defect detection. These include but are not limited to sensors, Statistical Process Control (SPC) software, Artificial Intelligence (AI) and machine learning (ML) algorithms, X-ray systems, ultrasound systems, and eddy current systems. OBJECTIVES: The determination of the suitable instrument or combination of instruments is contingent upon the precise production procedure and the category of flaw being identified. In certain cases, defects may necessitate real-time monitoring and analysis through the use of sensors and SPC software, whereas more comprehensive analysis may be required for other defects through the utilization of X-ray or ultrasound sy
... Show MoreThis study examines patterns of exposure of Iraqi university students to selective daily Iraqi newspapers and the motives of this exposure, as well as its associated factors that affect the average exposure. It tries to answer several questions, including those related to the levels of exposure of Iraqi university students to daily Iraqi newspapers and classification of patterns of selective exposure to daily Iraqi newspapers and the most prominent Iraqi daily newspapers that are selectively exposed by Iraqi university students. It also examines the motives of this selective exposure and factors that increase the degree of exposure to the daily Iraqi newspapers, and the most prominent stages in which Iraqi university students find their
... Show MoreBackground: Bone regeneration in dehiscence and fenestration defect can be improved with the use of platelet rich fibrin (PRF) that provides a scaffold for new bone regeneration. This study was conducted to assess the effectiveness of PRF as a graft material and membrane in dehiscence and fenestration defects. Materials and Methods: This prospective clinical study included patients who received dental implants that demonstrated peri-implant defects which were augmented using Leukocyte- PRF (L-PRF) or Advanced-PRF (A-PRF). Twenty four weeks postoperatively the defect resolution and the density of regenerated bone were assessed by CBCT and re-entry surgery. The assessment also included measurement of primary and secondary implant stability
... Show MoreAbstract:
This Research aims to define role of the system of evaluating the performance for higher leadership in determining the level of institutional work quality in the Ministry of Agriculture, by measuring system efficiency of evaluating the performance for higher leadership and its effect in institutional work quality, the searcher reached through the theoretical framing and involved studies to build default plan define the relation between Research variables formed from system of evaluating leadership performance as independent variable contains six subsidiary dimensions: (Polarization, evaluating the performance of personnel, training, motivation, se
... Show MorePhotocatalytic materials are being investigated as effective bactericides due to their superior ability to inactivate a broad range of dangerous microbes. In this study, the following two types of bacteria were employed for bactericidal purposes: Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The shape, crystal structure, element percentage, and optical properties of Ag9(SiO4)2NO3 were examined after it was successfully synthesized by a standard mixing and grinding processing route. Bactericidal efficiency was recorded at 100% by the following two types of light sources: solar and simulated light, with initial photocatalyst concentration of 2 µg/mL, and 97% and 95% of bactericidal acti
... Show MoreThe research objectives, to build a measure of the level of tactical performance of volleyball players applying for the Iraqi Premier League for the 2018-2019 season. The nature of the research problem, then the researchers determined the research sample in the deliberate manner of the players of the Iraqi clubs for the Premier League (B, A). The researchers adopted the entire community as a sample for the research, and the number (156) players distributed over (13) clubs and divided the sample into (12)players an exploratory experiment player representing (the police club) and (100) player representing the construction sample and after a maximum period of two months has passed since applying the scale to the construction sample the researc
... Show More