The fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).
The basic concept of diversity; where two or more inputs at the receiver are used to get uncorrelated signals. The aim of this paper is an attempt to compare some possible combinations of diversity reception and MLSE detection techniques. Various diversity combining techniques can be distinguished: Equal Gain Combining (EGC), Maximal Ratio Combining (MRC), Selection Combining and Selection Switching Combining (SS).The simulation results shows that the MRC give better performance than the other types of combining (about 1 dB compare with EGC and 2.5~3 dB compare with selection and selection switching combining).
This paper suggest two method of recognition, these methods depend on the extraction of the feature of the principle component analysis when applied on the wavelet domain(multi-wavelet). First method, an idea of increasing the space of recognition, through calculating the eigenstructure of the diagonal sub-image details at five depths of wavelet transform is introduced. The effective eigen range selected here represent the base for image recognition. In second method, an idea of obtaining invariant wavelet space at all projections is presented. A new recursive from that represents invariant space of representing any image resolutions obtained from wavelet transform is adopted. In this way, all the major problems that effect the image and
... Show More 
The research studied and analyzed the hybrid parallel-series systems of asymmetrical components by applying different experiments of simulations used to estimate the reliability function of those systems through the use of the maximum likelihood method as well as the Bayes standard method via both symmetrical and asymmetrical loss functions following Rayleigh distribution and Informative Prior distribution. The simulation experiments included different sizes of samples and default parameters which were then compared with one another depending on Square Error averages. Following that was the application of Bayes standard method by the Entropy Loss function that proved successful throughout the experimental side in finding the reliability fun
... Show MoreThe question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.
In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes
... Show MoreThis study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreThe analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is
... Show More